|
|
A160749
|
|
a(n) = (11*n^2 + 19*n + 10)/2.
|
|
1
|
|
|
5, 20, 46, 83, 131, 190, 260, 341, 433, 536, 650, 775, 911, 1058, 1216, 1385, 1565, 1756, 1958, 2171, 2395, 2630, 2876, 3133, 3401, 3680, 3970, 4271, 4583, 4906, 5240, 5585, 5941, 6308, 6686, 7075, 7475, 7886, 8308, 8741, 9185, 9640, 10106, 10583
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, Discrete Comput. Geom., 42 (2009), 670-702.
D. C. Haws, Matroids [Broken link, Oct 30 2017]
D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
D. C. Haws, Matroids/a> [Cached copy, pdf file only]
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
G.f.: (5+5*x+x^2)/(1-x)^3.
a(n) = a(n-1) + 11*n + 4 for n>0, a(0)=5. - Vincenzo Librandi, Sep 18 2011
E.g.f.: (10 + 30*x + 11*x^2)*exp(x)/2. - G. C. Greubel, Apr 26 2018
|
|
MAPLE
|
seq((11*n^2+19*n+10)/2, n=0..50); # G. C. Greubel, Sep 18 2019
|
|
MATHEMATICA
|
Table[(11n^2+19n+10)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {5, 20, 46}, 50] (* Harvey P. Dale, Nov 06 2014 *)
|
|
PROG
|
(Magma) [(11*n^2+19*n+10)/2: n in [0..50]]; // Vincenzo Librandi, Sep 18 2011
(PARI) a(n)=(11*n^2+19*n+10)/2 \\ Charles R Greathouse IV, Jun 17 2017
(Sage) [(11*n^2+19*n+10)/2 for n in (0..50)] # G. C. Greubel, Sep 18 2019
(GAP) List([0..50], n-> (11*n^2+19*n+10)/2); # G. C. Greubel, Sep 18 2019
|
|
CROSSREFS
|
Cf. A017437.
Sequence in context: A061188 A033429 A168011 * A147002 A005287 A147488
Adjacent sequences: A160746 A160747 A160748 * A160750 A160751 A160752
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
N. J. A. Sloane, Nov 18 2009
|
|
STATUS
|
approved
|
|
|
|