Matroids

This page, prepared by David C. Haws, is dedicated to the collection of software and data concerning matroids, related to:
De Loera. Jesús A.; Haws. David C.; Köppe. Matthias: Ehrhart Polynomials of Matroid Polytopes and Polymatroids, Discrete Comput. Geom., 42(4):670-702, 2009.
$h^{\wedge *}$-vectors and Ehrhart polynomials of the matroids in the appendix of Oxley:

U^\{2,4\}	1,2,1	1,7/3, 2, 2/3
$\mathrm{U} \wedge\{2,5\}$	5,5,1	1,35/12, 85/24, 25/12, 11/24
$\mathrm{U} \wedge\{3,5\}$	5,5,1	1,35/12, 85/24, 25/12, 11/24
K_4	1, 10, 20, 10, 1	1, 107/30, 21/4, 49/12, 7/4, 7/20
W^3	1,11,24, 11, 10	1,18/5, 11/2, 9/2, 2, 2/5
Q_6	1,12, 28, 12, 1	1, 109/30, 23/4, 59/12, 9/4, 9/20
P_6	1, 13, 32, 13, 1	1,11/3, 6, 16/3, 5/2, 1/2
U^\{3,6\}	1,14, 36, 14, 1	1,37/10, 25/4, 23/4, 11/4, 11/20
R_6	1,12, 28, 12, 1	1, 109/30, 23/4, 59/12, 9/4, 9/20
F_7	21,98, 91, 21, 1	1, 21/5, 343/45, 63/8, 91/18, 77/40, 29/90
F_7^	21, 98, 91, 21, 1	1, 21/5, 343/45, 63/8, 91/18, 77/40, 29/90
F_7^-	21, 101, 97, 22, 1	1, 253/60, 2809/360, 33/4, 193/36, 61/30, 121/360
(F_7^-)^	21, 101, 97, 22, 1	1,253/60, 2809/360, 33/4, 193/36, 61/30, 121/360
P^7	21, 104, 103, 23, 1	1, 127/30, 479/60, 69/8, 17/3, 257/120, 7/20
($\left.\mathrm{P}^{\wedge} 7\right)^{\wedge}$	21, 104, 103, 23, 1	1, 127/30, 479/60, 69/8, 17/3, 257/120, 7/20
AG(3,2)	1, 62, 561, 1014, 449, 48, 1	1, 209/42, 1981/180, 881/60, 119/9, 95/12, 499/180, 89/210
$\mathrm{AG}^{\prime}(3,2)$	1,62, 562, 1023, 458, 49, 1	1,299/60, 4007/360, 5401/360, 122/9, 2911/360, 1013/360, 77/180
R_8	1,62, 563, 1032, 467, 50, 1	1,524/105, 1013/90, 1379/90, 125/9, 743/90, 257/90, 136/315
F_8	1, 62, 563, 1032, 467, 50, 1	1, 524/105, 1013/90, 1379/90, 125/9, 743/90, 257/90, 136/315
Q_8	1, 62, 564, 1041, 476, 51, 1	1, 2099/420, 4097/360, 1877/120, 128/9, 337/40, 1043/360, 61/140
S_8	1, 44, 337, 612, 305, 40, 1	1, 1021/210, 377/36, 475/36, 193/18, 511/90, 65/36, 67/252
V_8	1,62, 570, 1095, 530,57, 1	1, 2117/420, 4367/360, 2107/120, 146/9, 1133/120, 1133/360, 193/420
T_8	1,62, 564, 1041, 476, 51, 1	1,2099/420, 4097/360, 1877/120, 128/9, 337/40, 1043/360, 61/140
V_8^+	1,62, 569, 1086, 521, 56, 1	1, 151/30, 2161/180, 3103/180, 143/9, 1669/180, 559/180, 41/90
L_8	1, 62, 567, 1068, 503, 54, 1	1,527/105, 529/45, 83/5, 137/9, 134/15, 136/45, 47/105
J	1,44, 339, 630, 323, 42, 1	1,512/105, 193/18, 83/6, 205/18, 361/60, 17/9, 23/84
P_8	1, 62, 565, 1050, 485, 52, 1	1,1051/210, 2071/180, 2873/180, 131/9, 1547/180, 529/180, 277/630
W_4	1,38, 262, 475, 254, 37, 1	1, 135/28, 3691/360, 1511/120, 88/9, 39/8, 529/360, 89/420
W^4	1, 38, 263, 484, 263, 38, 1	1, 169/35, 467/45, 581/45, 91/9, 227/45, 68/45, 68/315
K_\{3,3\}^*	78, 1116, 3492, 3237, 927, 72, 1	1,307/56, 137141/10080, 3223/160, 37807/1920, 211/16, 5743/960, 1889/1120, 8923/40320
K_\{3,3\}	78, 1116, 3492, 3237, 927, 72, 1	1,307/56, 137141/10080, 3223/160, 37807/1920, 211/16, 5743/960, 1889/1120, 8923/40320
AG(2,3)	1, 147, 1230, 1885, 714, 63, 1	1,1453/280, 41749/3360, 581/32, 34069/1920, 927/80, 4541/960, 239/224, 449/4480
Pappus	1, 147, 1230, 1915, 744, 66, 1	1, 729/140, 3573/280, 381/20, 1499/80, 243/20, 49/10, 153/140, 57/560
Non-Pappus	1,147, 1230, 1925, 754, 67, 1	1,4379/840, 25951/2016, 9287/480, 21967/1152, 987/80, 2855/576, 3701/3360, 275/2688
Q_3(GF(3) ${ }^{\wedge *}$)	1,147, 1098, 1638, 632, 59, 1	1, 433/84, 3079/252, 4193/240, 5947/360, 167/16, 601/144, 787/840, 149/1680
R_9	1,147, 1142, 1717, 656, 60, 1	1,723/140, 49/4, 88/5, 24217/1440, 1291/120, 625/144, 821/840, 133/1440

Software to compute the $h^{\wedge *}$-vector of uniform matroids.

We implement this explicit equation in maple as well as recursive expressions developed in "Ehrhart Polynomials of Matroid Polytopes and Polymatroids".
The software can be found here
Software to compute the Ehrhart polynomials of uniform matroids.

The software which implements this can be found here as well as software to test positivity here.
We tested up to 75 elements, that the uniform matroids have positive coefficients in their Ehrhart polynomials using the above software.

Graphical matroids.

 spanning trees (matroid bases).

4wheel	6gon	g1v4e4	grid3x3	K4
4wheel.ext	6gon.ext	g1v4e4.ext	grid3x3.ext	K4.ext
4wheel.ine	6gon.ine	g1v4e4.ine	grid3x3.ine	K4.ine
4wheel.lat	6gon.lat	g1v4e4.lat	grid 3×3.1 at	K4.lat
4wheel.lat.rat.simp	6gon.lat.rat.simp	g1v4e4.lat.rat.simp	grid3x3.lat.rat.simp	K4.lat.rat.simp

Random realizable matroids.

 These maple programs and perl programs are also necessary to properly run: rmatroid, unimodal, inetolat.pl. Here is a useful perl script to automatically run user defined number of tests: dormatroid.pl.

Gordon Royle matroid

Here you can find an excellent list, with many important properties, of all matroids with elements less than or equal to nine.

Unimodular Triangulations

 found by TOPCOM which is the placing triangultion.

All 1317 Connected Matroids Unimodular Triangulations Eight Elements or Less.txt.gz

 triangulation. TRIANGULATION(<number>) indicates which the number of iterations/filps TOPCOM used to get the triangulation (using points2triangs).

Connected Matroids Unimodular G Connected Triangulations.txt

