login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160750 Expansion of (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5. 1
1, 16, 94, 331, 880, 1951, 3811, 6784, 11251, 17650, 26476, 38281, 53674, 73321, 97945, 128326, 165301, 209764, 262666, 325015, 397876, 482371, 579679, 691036, 817735, 961126, 1122616, 1303669, 1505806, 1730605, 1979701, 2254786, 2557609 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Source: the De Loera et al. article and the Haws website.
The coefficient of x^4 should be 1 rather than 10, and so this is an erroneous version of A294433. However, it remains in the OEIS in accordance with our policy of including published but erroneous sequences, to serve as pointers to the correct versions. - N. J. A. Sloane, Oct 30 2017
LINKS
J. A. De Loera, D. C. Haws and M. Koppe, Ehrhart Polynomials of Matroid Polytopes and Polymatroids, Discrete Comput. Geom., 42 (2009), 670-702.
D. C. Haws, Matroids [Broken link, Oct 30 2017]
D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
FORMULA
G.f.: (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
a(n) = 19*n^4/8 +7*n^3/4 +77*n^2/8 +5*n/4 +1. - R. J. Mathar, Sep 11 2011
E.g.f.: (1/8)*(19*x^4 + 128*x^3 + 252*x^2 + 120*x + 1)*exp(x). - G. C. Greubel, Apr 26 2018
MATHEMATICA
Table[(19*n^4 +14*n^3 +77*n^2 +10*n +1)/8, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 16, 94, 331, 880}, 30] (* G. C. Greubel, Apr 26 2018 *)
PROG
(Magma) [19*n^4/8+7*n^3/4+77*n^2/8+5*n/4+1: n in [0..50]]; // Vincenzo Librandi, Sep 18 2011
(PARI) x='x+O('x^30); Vec((1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5) \\ G. C. Greubel, Apr 26 2018
CROSSREFS
Cf. A294433.
Sequence in context: A305639 A317033 A294433 * A305908 A316880 A317150
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 18 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 6 22:19 EDT 2023. Contains 363151 sequences. (Running on oeis4.)