|
|
A160750
|
|
Expansion of (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
|
|
1
|
|
|
1, 16, 94, 331, 880, 1951, 3811, 6784, 11251, 17650, 26476, 38281, 53674, 73321, 97945, 128326, 165301, 209764, 262666, 325015, 397876, 482371, 579679, 691036, 817735, 961126, 1122616, 1303669, 1505806, 1730605, 1979701, 2254786, 2557609
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Source: the De Loera et al. article and the Haws website.
The coefficient of x^4 should be 1 rather than 10, and so this is an erroneous version of A294433. However, it remains in the OEIS in accordance with our policy of including published but erroneous sequences, to serve as pointers to the correct versions. - N. J. A. Sloane, Oct 30 2017
|
|
LINKS
|
D. C. Haws, Matroids [Broken link, Oct 30 2017]
D. C. Haws, Matroids [Copy on website of Matthias Koeppe]
|
|
FORMULA
|
G.f.: (1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5.
a(n) = 19*n^4/8 +7*n^3/4 +77*n^2/8 +5*n/4 +1. - R. J. Mathar, Sep 11 2011
E.g.f.: (1/8)*(19*x^4 + 128*x^3 + 252*x^2 + 120*x + 1)*exp(x). - G. C. Greubel, Apr 26 2018
|
|
MATHEMATICA
|
Table[(19*n^4 +14*n^3 +77*n^2 +10*n +1)/8, {n, 0, 30}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 16, 94, 331, 880}, 30] (* G. C. Greubel, Apr 26 2018 *)
|
|
PROG
|
(Magma) [19*n^4/8+7*n^3/4+77*n^2/8+5*n/4+1: n in [0..50]]; // Vincenzo Librandi, Sep 18 2011
(PARI) x='x+O('x^30); Vec((1+11*x+24*x^2+11*x^3+10*x^4)/(1-x)^5) \\ G. C. Greubel, Apr 26 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|