login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061188
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000032(n+1), n >= 0 (Lucas numbers).
2
0, 1, 5, 20, 45, 25, 240, 350, 600, 250, 3000, 9250, 13125, 8750, 1875, 93000, 373750, 361875, 240625, 103125, 15625, 3690000, 11077500, 12818750, 8531250, 4156250, 1181250, 125000, 116550000, 312037500
OFFSET
0,3
COMMENTS
The row polynomials pL1(n,x) := sum(a(n,m)*x^m,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n) appear in the k-fold convolution of the Lucas numbers L(n+1)= A000204(n+1)= A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k)= (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1)/(k!*5^k).
EXAMPLE
{0}; {1,5}; {20,45,25}; {240,350,600,250}; ...; pL1(2,n)=5*(4+9*n+5*n^2)= 5*(1+n)*(4+5*n).
CROSSREFS
A061189(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).
Sequence in context: A363695 A228168 A178977 * A033429 A168011 A160749
KEYWORD
nonn,tabl
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved