|
|
A061188
|
|
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000032(n+1), n >= 0 (Lucas numbers).
|
|
2
|
|
|
0, 1, 5, 20, 45, 25, 240, 350, 600, 250, 3000, 9250, 13125, 8750, 1875, 93000, 373750, 361875, 240625, 103125, 15625, 3690000, 11077500, 12818750, 8531250, 4156250, 1181250, 125000, 116550000, 312037500
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The row polynomials pL1(n,x) := sum(a(n,m)*x^m,m=0..n) and pL2(n,x) := sum(A061189(n,m)*x^m,m=0..n) appear in the k-fold convolution of the Lucas numbers L(n+1)= A000204(n+1)= A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k)= (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1)/(k!*5^k).
|
|
LINKS
|
|
|
EXAMPLE
|
{0}; {1,5}; {20,45,25}; {240,350,600,250}; ...; pL1(2,n)=5*(4+9*n+5*n^2)= 5*(1+n)*(4+5*n).
|
|
CROSSREFS
|
A061189(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|