login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061186
Staircase of coefficients of polynomials used for column g.f.s of triangle A060923.
5
1, 1, 1, 1, 11, -11, 4, 1, 30, -6, -23, 12, 1, 58, 123, -278, 193, -72, 16, 1, 95, 565, -715, -145, 601, -360, 80, 1, 141, 1590, 89, -5226, 6441, -3659, 1260, -336, 64, 1, 196, 3549, 6797, -22099, 12369, 9156, -15791, 9492
OFFSET
0,5
COMMENTS
a(n,m) is coefficient of x^m of polynomial pLe(n,x) := (((1+x)+(3-2*x)*sqrt(x))^n + ((1+x)-(3-2*x)*sqrt(x))^n)/2 of degree n+floor(n/2)= A032766(n). pLe(n,x)= sum(binomial(n,2*j)*(1+x)^(n-2*j)*(3-2*x)^(2*j)*x^j,j=0..floor(n/2)), n >= 1; pLe(0,x)=1.
pLe(m+1,x) is the numerator polynomial of the g.f. for column m >= 0 of the triangle A060923 (even part of bisection of Lucas triangle).
FORMULA
a(n, m)=sum(((-9/2)^j*binomial(n, 2*j)*sum((-3/2)^(k-m)*binomial(n-2*j, k)*binomial(2*j, m-k-j), k=max(0, (m-3*j))..(n-2*j))), j=0..floor(n/2)), 0<= m <= n+floor(n/2); else 0.
EXAMPLE
{1}; {1,1}; {1,11,-11,4}; ...; pLe(2,x)= 1+11*x-11*x^2+4*x^3.
CROSSREFS
A061187 (companion staircase).
Sequence in context: A322270 A260589 A291367 * A135684 A220295 A300289
KEYWORD
sign,easy,tabf
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved