The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A300289 a(n) is the smallest prime p such that the product of p and prime(n) contains only prime digits, or -1 if no such prime p exists. 1
 11, 11, 5, 5, 2, 29, 19, 3, 11, 13, 17, 61, 13, 59, 5, 61, 43, 37, 5, 5, 101, 3, 31, 307, 59, 23, 541, 5, 3, 29, 179, 17, 1721, 257, 17, 5, 239, 229, 199, 149, 3, 13, 3, 1439, 281, 127, 107, 101, 9791, 163, 31, 107, 3, 3, 139, 199, 83, 13, 929, 83, 19, 11, 11, 107, 71, 181, 167, 661, 1031 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If a(i) = prime(j), then a(j) <= prime(i). - Rémy Sigrist, Mar 03 2018. [Note that this does not imply that a prime p always exists! In fact if r and s are large primes, r*s will surely contain a nonprime digit, although this kind of question is beyond the reach of present-day mathematics. - N. J. A. Sloane, Mar 03 2018] LINKS EXAMPLE 11 is the smallest prime such that 11*prime(1)=22 consists of only prime digits. Therefore a(1) = 11. MATHEMATICA p[n_] := Module[{k = 1}, While[Union[PrimeQ /@ IntegerDigits[n*Prime[k]]] != {True}, k++]; Prime[k]]; p /@ Prime[Range[100]] PROG (PARI) a(n) = {forprime(p=2, , if (#select(x->(! isprime(x)), digits(p*prime(n))) == 0, return (p)); ); } \\ Michel Marcus, Mar 02 2018 CROSSREFS Cf. A046034. Sequence in context: A061186 A135684 A220295 * A321108 A126610 A087380 Adjacent sequences: A300286 A300287 A300288 * A300290 A300291 A300292 KEYWORD nonn,base AUTHOR Ivan N. Ianakiev, Mar 02 2018 EXTENSIONS Escape clause added to definition by N. J. A. Sloane, Mar 03 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 07:39 EDT 2023. Contains 361645 sequences. (Running on oeis4.)