OFFSET
1,1
COMMENTS
The numbers p and q that are the members of the solution (p,q) satisfying q^p == 1 (mod 2p+1) and p^q == 1 (mod 2q+1) where p and q are prime.
q^p == 1 (mod 2p+1) and p^q == 1 (mod 2q+1) has no solution if p is a prime of the form 6m+1 (A002476) => a(n) = 0.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
EXAMPLE
a(2) = 11 because for (p,q) = (3,11), 11^3 == 1 (mod 7) and 3^11 == 1 mod 23.
MAPLE
with(numtheory):T:=array(1..100):T[1]:=2:T[2]:=3:
for n from 3 to 100 do :
p:=ithprime(n):if irem(p, 6)=5 then
T[n]:=p:else T[n]:=0:
fi:
od:
print(T):
for a from 1 to 50 do:
p:=T[a]: if p= 0 then
printf(`%d, `, 0):
else :
ii:=0:
for b from 1 to 10^8 while(ii=0) do:
q:=ithprime(b): if irem(p^q, 2*q+1) = 1 and irem(q^p, 2*p+1)=1 then
ii:=1: printf(`%d, `, q):
else :
fi:
od:
fi:
od:
MATHEMATICA
Table[p = Prime[n]; If[Mod[p, 6] == 1, 0, q = 2; While[! (PowerMod[p, q, 2 q + 1] == 1 && PowerMod[q, p, 2 p + 1] == 1), q = NextPrime[q]]; q], {n, 100}] (* T. D. Noe, Feb 22 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 19 2013
STATUS
approved