login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220294
a(n) = 1 - 2^(2^n) + 2^(2^(n+1)).
7
3, 13, 241, 65281, 4294901761, 18446744069414584321, 340282366920938463444927863358058659841, 115792089237316195423570985008687907852929702298719625575994209400481361428481
OFFSET
0,1
COMMENTS
An infinite coprime sequence defined by recursion.
FORMULA
A220161(n+1) = a(n) * A220161(n).
a(n+1) = 1 + (a(n) - 1) * (A220161(n) - 1).
a(n) = A002716(2*n) = 1 + A087046(n+2) = 1 + A111403(n).
a(n) = A002061(A001146(n)). - Pontus von Brömssen, Aug 31 2021
MATHEMATICA
Table[4^(2^m) - 2^(2^m) + 1, {m, 0, 7}] (* Michael De Vlieger, Aug 02 2016 *)
PROG
(PARI) {a(n) = if( n<0, 0, 1 - 2^(2^n) + 2^(2^(n+1)))};
(Maxima) A220294(n):=1 - 2^(2^n) + 2^(2^(n+1))$ makelist(A220294(n), n, 0, 10); /* Martin Ettl, Dec 10 2012 */
(Magma) [1 - 2^(2^n) + 2^(2^(n+1)): n in [0..10]]; // G. C. Greubel, Aug 10 2018
KEYWORD
nonn
AUTHOR
Michael Somos, Dec 10 2012
STATUS
approved