login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111431
a(n) = Fibonacci(tribonacci(n)).
2
0, 0, 1, 1, 1, 3, 13, 233, 46368, 701408733, 37889062373143906, 6161314747715278029583501626149, 818706854228831001753880637535093596811413714795418360007
OFFSET
0,6
LINKS
FORMULA
a(n) = A000045(A000073(n)).
EXAMPLE
a(0) = Fibonacci(tribonacci(0)) = A000045(A000073(0)) = A000045(0) = 0.
a(1) = Fibonacci(tribonacci(1)) = A000045(A000073(1)) = A000045(0) = 0.
a(2) = Fibonacci(tribonacci(2)) = A000045(A000073(2)) = A000045(1) = 1.
a(3) = Fibonacci(tribonacci(3)) = A000045(A000073(3)) = A000045(1) = 1.
a(4) = Fibonacci(tribonacci(4)) = A000045(A000073(4)) = A000045(2) = 1.
a(5) = Fibonacci(tribonacci(5)) = A000045(A000073(5)) = A000045(4) = 3.
a(6) = Fibonacci(tribonacci(6)) = A000045(A000073(6)) = A000045(7) = 13.
a(7) = Fibonacci(tribonacci(7)) = A000045(A000073(7)) = A000045(13) = 233.
a(8) = A000045(A000073(8)) = A000045(24) = 46368.
a(9) = A000045(A000073(9)) = A000045(44) = 701408733.
a(10) = A000045(A000073(10)) = A000045(81) = 37889062373143906.
MAPLE
a:= n-> (<<0|1>, <1|1>>^((<<0|1|0>, <0|0|1>, <1|1|1>>^n)[1, 3]))[1, 2]:
seq(a(n), n=0..13); # Alois P. Heinz, Aug 09 2018
MATHEMATICA
Fibonacci/@LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 15] (* Harvey P. Dale, Jan 04 2013 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Nov 13 2005
STATUS
approved