login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220297
Number of ways to cut a 4 X n rectangle into rectangles with integer sides.
4
1, 8, 148, 3164, 70878, 1613060, 36911922, 846280548, 19415751782, 445550465628, 10225294476962, 234675373081668, 5385967300825942, 123612245431357148, 2837003283963428562, 65111601723938370628, 1494366038587416919782, 34296959750113321113308
OFFSET
0,2
LINKS
David A. Klarner and Spyros S. Magliveras, The number of tilings of a block with blocks, European Journal of Combinatorics 9 (1988), 317-330.
Joshua Smith and Helena Verrill, On dividing rectangles into rectangles
Index entries for linear recurrences with constant coefficients, signature (44,-645,4280,-13840,20980,-11680).
FORMULA
G.f.: see Maple program.
EXAMPLE
a(1) = 8:
._. ._. ._. ._. ._. ._. ._. ._.
| | |_| | | | | |_| |_| | | |_|
| | | | |_| | | |_| | | |_| |_|
| | | | | | |_| | | |_| |_| |_|
|_| |_| |_| |_| |_| |_| |_| |_|
.
MAPLE
gf:= (3832*x^6 -8492*x^5 +6722*x^4 -2468*x^3 +441*x^2 -36*x+1) / (11680*x^6 -20980*x^5 +13840*x^4 -4280*x^3 +645*x^2 -44*x+1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
CROSSREFS
Column m=4 of A116694.
Sequence in context: A279127 A259991 A212732 * A307942 A116876 A218305
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 10 2012
STATUS
approved