login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220299
Number of ways to cut a 6 X n rectangle into rectangles with integer sides.
3
1, 32, 2864, 314662, 36911922, 4427635270, 535236230270, 64878517290010, 7871769490695758, 955411617212520670, 115973945786899746170, 14078248409306427591814, 1709004742525016740261850, 207462778992946779638832746, 25184765957310295151583128422
OFFSET
0,2
LINKS
David A. Klarner and Spyros S. Magliveras, The number of tilings of a block with blocks, European Journal of Combinatorics 9 (1988), 317-330.
Joshua Smith and Helena Verrill, On dividing rectangles into rectangles
FORMULA
G.f.: see Maple program.
MAPLE
gf:= (916798938728006656*x^20 -3962057190907156288*x^19 +7644699117821849592*x^18 -8795707489604640136*x^17 +6787540243858479914*x^16 -3741365942249935792*x^15 +1530293206620422033*x^14 -475918767335413756*x^13
+114321113226304761*x^12 -21415445169034874*x^11 +3143712388922139*x^10 -361909626897452*x^9 +32569667881308*x^8 -2274379347082*x^7 +121717789540*x^6 -4898404600*x^5 +144102468*x^4 -2968032*x^3 +39908*x^2 -308*x +1)/
(3488260147244630016*x^20 -13785403213649739264*x^19 +24571927550599277952*x^18 -26305901575283773400*x^17 +18988035581731414180*x^16 -9828185761768234778*x^15
+3785664669818771697*x^14 -1111033817019987980*x^13 +252212834590208135*x^12 -44688005447169948*x^11 +6207093806210985*x^10 -676048684437666*x^9 +57526055007906*x^8 -3794064844276*x^7 +191447789306*x^6 -7247125678*x^5 +199881354*x^4 -3842502*x^3 +47924*x^2 -340*x +1):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..20);
CROSSREFS
Column m=6 of A116694.
Sequence in context: A111923 A136246 A248074 * A264115 A113500 A064018
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 10 2012
STATUS
approved