The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046034 Numbers whose digits are primes. 93
 2, 3, 5, 7, 22, 23, 25, 27, 32, 33, 35, 37, 52, 53, 55, 57, 72, 73, 75, 77, 222, 223, 225, 227, 232, 233, 235, 237, 252, 253, 255, 257, 272, 273, 275, 277, 322, 323, 325, 327, 332, 333, 335, 337, 352, 353, 355, 357, 372, 373, 375, 377, 522, 523, 525, 527, 532 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A055642(a(n)) = A193238(a(n)). - Reinhard Zumkeller, Jul 19 2011 If n is represented as a zerofree base-4 number (see A084544) according to n=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=2,3,5,7 for k=1..4. - Hieronymus Fischer, May 30 2012 According to A153025, it seems that 5, 235 and 72335 are the only terms whose square is again a term, i.e., which are also in the sequence A275971 of square roots of the terms which are squares, listed in A191486. - M. F. Hasler, Sep 16 2016 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Eric Weisstein's World of Mathematics, Smarandache Sequences. FORMULA From Hieronymus Fischer, Apr 20, May 30 and Jun 25 2012: (Start) a(n) = sum_{j=0..m-1} ((2*b(j)+1) mod 8 + floor(b(j)/4) - floor((b(j)-1)/4))*10^j, where m = floor(log_4(3*n+1)), b(j) = floor((3*n+1-4^m)/(3*4^j)). Also: a(n) = sum_{j=0..m-1} (A010877(A005408(b(j)) + A002265(b(j)) - A002265(b(j)-1))*10^j. Special values: a(1*(4^n-1)/3) = 2*(10^n-1)/9. a(2*(4^n-1)/3) = 1*(10^n-1)/3. a(3*(4^n-1)/3) = 5*(10^n-1)/9. a(4*(4^n-1)/3) = 7*(10^n-1)/9. Inequalities: a(n) <= 2*(10^log_4(3*n+1)-1)/9, equality holds for n = (4^k-1)/3, k>0. a(n) <= 2*A084544(n), equality holds iff all digits of A084544(n) are 1. a(n) > A084544(n). Lower and upper limits: lim inf a(n)/10^log_4(n) = 7/90*10^log_4(3) = 0.482321677069870, for n --> inf. lim sup a(n)/10^log_4(n) = 2/9*10^log_4(3) = 1.37806193448534318470, for n --> inf. where 10^log_4(n) = n^1.66096404744... G.f.: g(x) = (x^(1/3)*(1-x))^(-1) sum_{j=>0} 10^j*z(j)^(4/3)*(2 + z(j) + 2*z(j)^2 + 2*z(j)^3 - 7*z(j)^4)/(1-z(j)^4), where z(j) = x^4^j. Also g(x) = (x^(1/3)*(1-x))^(-1) sum_{j>=0} 10^j*z(j)^(4/3)*(1-z(j))*(2 + 3z(j) + 5*z(j)^2 + 7*z(j)^3)/(1-z(j)^4), where z(j)=x^4^j. Also: g(x) = (1/(1-x))*(2*h_(4,0)(x) + h_(4,1)(x) + 2*h_(4,2)(x) + 2*h_(4,3)(x) - 7*h_(4,4)(x)), where h_(4,k)(x) = sum_{j>=0} 10^j*x^((4^(j+1)-1)/3)*x^(k*4^j)/(1-x^4^(j+1)). (End) EXAMPLE a(100)   = 2277, a(10^3)  = 55327, a(9881)  = 3233232, a(10^4)  = 3235757, a(10922) = 3333333, a(10^5)  = 227233257. MATHEMATICA Table[FromDigits /@ Tuples[{2, 3, 5, 7}, n], {n, 3}] // Flatten (* Michael De Vlieger, Sep 19 2016 *) PROG (PARI) is_A046034(n)=Set(isprime(digits(n)))==[1] \\ M. F. Hasler, Oct 12 2013 (Haskell) a046034 n = a046034_list !! (n-1) a046034_list = filter (all (`elem` "2357") . show ) [0..] -- Reinhard Zumkeller, Jul 19 2011 (MAGMA) [n: n in [2..532] | Set(Intseq(n)) subset [2, 3, 5, 7]];  // Bruno Berselli, Jul 19 2011 CROSSREFS Cf. A046035, A118950, A019546 (primes), A203263, A035232, A039996, A085823, A052382, A084544, A084984, A017042, A001743, A001744, A014261, A014263, A193238, A202267, A202268, A211681. Sequence in context: A024769 A085557 A125665 * A062087 A162457 A084983 Adjacent sequences:  A046031 A046032 A046033 * A046035 A046036 A046037 KEYWORD nonn,base,easy AUTHOR EXTENSIONS More terms from Cino Hilliard, Aug 06 2006 Typo in second formula corrected by Hieronymus Fischer, May 12 2012 Two typos in example section corrected by Hieronymus Fischer, May 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 06:03 EDT 2020. Contains 334697 sequences. (Running on oeis4.)