login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001743 Every digit contains at least one loop (version 1). 23
0, 6, 8, 9, 60, 66, 68, 69, 80, 86, 88, 89, 90, 96, 98, 99, 600, 606, 608, 609, 660, 666, 668, 669, 680, 686, 688, 689, 690, 696, 698, 699, 800, 806, 808, 809, 860, 866, 868, 869, 880, 886, 888, 889, 890, 896, 898, 899, 900, 906, 908, 909, 960, 966, 968, 969 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A001744 for the other version.

If n-1 is represented as a base-4 number (see A007090) according to n-1 = d(m)d(m-1)…d(3)d(2)d(1)d(0) then a(n)= Sum_{j=0..m} c(d(j))*10^j, where c(k)=0,6,8,9 for k=0..3. - Hieronymus Fischer, May 30 2012

LINKS

Hieronymus Fischer, Table of n, a(n) for n = 1..10000

Index entries for 10-automatic sequences.

FORMULA

From Hieronymus Fischer, May 30 2012 (Start):

a(n) = ((b_m(n)+6) mod 9 + floor((b_m(n)+2)/3) - floor(b_m(n)/3))*10^m + Sum_{j=0..m-1} (b_j(n) mod 4 +5*floor((b_j(n)+3)/4) +floor((b_j(n)+2)/4)- 6*floor(b_j(n)/4)))*10^j, where n>1, b_j(n)) = floor((n-1-4^m)/4^j), m = floor(log_4(n-1)).

a(1*4^n+1) = 6*10^n.

a(2*4^n+1) = 8*10^n.

a(3*4^n+1) = 9*10^n.

a(n) = 6*10^log_4(n-1) for n=4^k+1,

a(n) < 6*10^log_4(n-1), else.

a(n) > 10^log_4(n-1) for n>1.

a(n) = 6*A007090(n-1), iff the digits of A007090(n-1) are 0 or 1.

G.f.: g(x) = (x/(1-x))*Sum_{j>=0} 10^j*x^4^j *(1-x^4^j)* (6 + 8x^4^j + 9(x^2)^4^j)/(1-x^4^(j+1)).

Also: g(x) = (x/(1-x))*(6*h_(4,1)(x) + 2*h_(4,2)(x) + h_(4,3)(x) - 9*h_(4,4)(x)), where h_(4,k)(x) = Sum_{j>=0} 10^j*(x^4^j)^k/(1-(x^4^j)^4). (End)

EXAMPLE

a(1000) = 99896.

a(10^4) = 8690099.

a(10^5) = 680688699.

MATHEMATICA

Union[Flatten[Table[FromDigits/@Tuples[{0, 6, 8, 9}, n], {n, 3}]]] (* Harvey P. Dale, Sep 04 2013 *)

PROG

(PARI) is(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 4, 5, 7])==0 \\ Felix Fröhlich, Sep 09 2019

CROSSREFS

Cf. A007090, A046034, A029581, A084984, A017042, A001744, A014261, A014263, A202267, A202268.

Sequence in context: A284990 A238621 A099102 * A256964 A046344 A116366

Adjacent sequences:  A001740 A001741 A001742 * A001744 A001745 A001746

KEYWORD

base,nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Examples added by Hieronymus Fischer, May 30 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 14:15 EST 2019. Contains 329806 sequences. (Running on oeis4.)