OFFSET
1,3
COMMENTS
Complement of A118950. - Reinhard Zumkeller, Jul 19 2011
If n-1 is represented as a base-6 number (see A007092) according to n-1=d(m)d(m-1)...d(3)d(2)d(1)d(0) then a(n)= sum_{j=0..m} c(d(j))*10^j, where c(k)=0,1,4,6,8,9 for k=0..5. - Hieronymus Fischer, May 30 2012
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
FORMULA
A193238(a(n)) = 0. - Reinhard Zumkeller, Jul 19 2011
a(n) >> n^1.285. - Charles R Greathouse IV, Feb 20 2012
From Hieronymus Fischer, May 30 and Jun 25 2012: (Start)
a(n) = ((2*b_m(n)+1) mod 10 + floor((b_m(n)+4)/5) - floor((b_m(n)+1)/5))*10^m + sum_{j=0..m-1} ((2*b_j(n))) mod 12 + floor(b_j(n)/6) - floor((b_j(n)+1)/6) + floor((b_j(n)+4)/6) - floor((b_j(n)+5)/6)))*10^j, where n>1, b_j(n)) = floor((n-1-6^m)/6^j), m = floor(log_6(n-1)).
Special values:
a(1*6^n+1) = 1*10^n.
a(2*6^n+1) = 4*10^n.
a(3*6^n+1) = 6*10^n.
a(4*6^n+1) = 8*10^n.
a(5*6^n+1) = 9*10^n.
a(2*6^n) = 2*10^n - 1.
a(n) = 10^log_6(n-1) for n=6^k+1, k>0.
Inequalities:
a(n) < 10^log_6(n-1) for 6^k+1<n<=2*6^k, k>0.
a(n) > 10^log_6(n-1) for 2*6^k<n<=6*6^k, k>=0.
a(n) <= 4*10^(log_6(n-1)-log_6(2)) = 1.641372618*10^(log_6(n-1)), equality holds for n=2*6^k+1, k>=0.
a(n) > 2*10^(log_6(n-1)-log_6(2)) = 0.820686309*10^(log_6(n-1)).
a(n) >= A202267(n), equality holds if the representation of n-1 as a base-6 number has only digits 0 or 1.
Lower and upper limits:
lim inf a(n)/10^log_6(n) = 2/10^log_6(2) = 0.820686309, for n --> inf.
lim sup a(n)/10^log_6(n) = 4/10^log_6(2) = 1.641372618, for n --> inf.
where 10^log_6(n) = n^1.2850972089...
G.f.: g(x) = (x/(1-x))*sum_{j>=0} 10^j*x^6^j * (1-x^6^j)*((1+x^6^j)^4 + 4(1+2x^6^j) * x^(3*6^j))/(1-x^6^(j+1)).
Also: g(x) = (x/(1-x))*(h_(6,1)(x) + 3*h_(6,2)(x) + 2*h_(6,3)(x) + 2*h_(6,4)(x) + h_(6,5)(x) - 9*h_(6,6)(x)), where h_(6,k)(x) = sum_{j>=0} 10^j*x^(k*6^j)/(1-x^6^(j+1)). (End)
Sum_{n>=2} 1/a(n) = 3.614028405471074989720026361356036456697082276983705341077940360653303099111... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 15 2024
EXAMPLE
166 has digits 1 and 6 and they are nonprime digits.
a(1000) = 8686.
a(10^4) = 118186
a(10^5) = 4090986.
a(10^6) = 66466686.
MATHEMATICA
npdQ[n_]:=And@@Table[FreeQ[IntegerDigits[n], i], {i, {2, 3, 5, 7}}]; Select[ Range[ 0, 200], npdQ] (* Harvey P. Dale, Jul 22 2013 *)
PROG
(Haskell)
a084984 n = a084984_list !! (n-1)
a084984_list = filter (not . any (`elem` "2357") . show ) [0..]
-- Reinhard Zumkeller, Jul 19 2011
(Magma) [n: n in [0..169] | forall{d: d in [2, 3, 5, 7] | d notin Set(Intseq(n))}]; // Bruno Berselli, Jul 19 2011
(PARI) is(n)=isprime(eval(Vec(Str(n))))==0 \\ Charles R Greathouse IV, Feb 20 2012
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Meenakshi Srikanth (menakan_s(AT)yahoo.com), Jun 27 2003
EXTENSIONS
0 added by N. J. A. Sloane, Feb 02 2009
100 added by Arkadiusz Wesolowski, Mar 10 2011
Examples for n>=10^3 added by Hieronymus Fischer, May 30 2012
STATUS
approved