The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A039996 Number of distinct primes embedded in prime(n) as substrings. 73
 1, 1, 1, 1, 1, 2, 2, 1, 3, 2, 2, 3, 1, 2, 2, 3, 2, 1, 2, 2, 3, 2, 2, 1, 2, 1, 2, 2, 1, 4, 3, 4, 5, 3, 1, 2, 3, 2, 3, 5, 4, 1, 2, 3, 4, 2, 3, 4, 3, 3, 4, 4, 3, 3, 4, 3, 2, 4, 3, 2, 4, 4, 3, 4, 4, 5, 3, 4, 4, 2, 4, 4, 4, 5, 5, 3, 3, 4, 1, 1, 3, 2, 4, 3, 3, 3, 1, 3, 2, 2, 3, 4, 2, 1, 1, 3, 2, 3, 5, 3, 4, 3, 3, 2, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 LINKS David A. Corneth, Table of n, a(n) for n = 1..10000 FORMULA a(n) = A039997(prime(n)). a(n) <= A039994(n). - Charles R Greathouse IV, Apr 22 2015 EXAMPLE a(26) = 1 since the only prime substring of "101" is 101. a(48) = 4 since the only distinct prime substrings of "223" are 2, 3, 23, 223. - David A. Corneth, Jul 06 2020 MATHEMATICA f[n_] := Block[{id = IntegerDigits@ Prime@n, len = Floor[ Log[10, Prime@n] + 1]}, Count[ PrimeQ@ Union[ FromDigits@# & /@ Flatten[ Table[ Partition[id, k, 1], {k, len}], 1]], True]]; Array[f, 105] (* Robert G. Wilson v, Jun 28 2010 *) PROG (PARI) dp(n)=if(n<12, return(if(isprime(n), [n], []))); my(v=vecsort(select(isprime, eval(Vec(Str(n)))), , 8), t); while(n>9, if(gcd(n%10, 10)>1, n\=10; next); t=10; while((t*=10)

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 16:32 EDT 2024. Contains 372664 sequences. (Running on oeis4.)