login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061189
Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000204(n+1), n >= 0 (Lucas numbers).
2
1, 2, 0, -10, 15, 25, 30, 475, 450, 125, 6000, 8500, 6250, 5000, 1250, 96000, 146250, 189375, 159375, 65625, 9375, 180000, 5355000, 8881250, 5578125, 2515625, 721875, 78125, 44100000, 254700000, 341775000
OFFSET
0,2
COMMENTS
The row polynomials pL2(n,x) := sum(a(n,m)*x^m,m=0..n) and pL1(n,x) := sum(A061188(n,m)*x^m,m=0..n) appear in the k-fold convolution of the Lucas numbers L(n+1)= A000204(n+1)= A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k)= (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1)/(k!*5^k).
EXAMPLE
{1}; {2,0}; {-10,15,25}; {30,475,450,125}; ...; pL2(2,n)=5*(-2+3*n+5*n^2)= 5*(1+n)*(-2+5*n).
L(2; n) := A060922(n+2,2)= A060929(n) = (1+n)*((4+5*n)*L(n+2)+(-2+5*n)*L(n+1))/(2*5).
CROSSREFS
A061188(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).
Sequence in context: A351879 A070681 A228539 * A019220 A019140 A361816
KEYWORD
sign,tabl
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved