Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #3 Mar 31 2012 13:20:05
%S 1,2,0,-10,15,25,30,475,450,125,6000,8500,6250,5000,1250,96000,146250,
%T 189375,159375,65625,9375,180000,5355000,8881250,5578125,2515625,
%U 721875,78125,44100000,254700000,341775000
%N Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000204(n+1), n >= 0 (Lucas numbers).
%C The row polynomials pL2(n,x) := sum(a(n,m)*x^m,m=0..n) and pL1(n,x) := sum(A061188(n,m)*x^m,m=0..n) appear in the k-fold convolution of the Lucas numbers L(n+1)= A000204(n+1)= A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k)= (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1)/(k!*5^k).
%e {1}; {2,0}; {-10,15,25}; {30,475,450,125}; ...; pL2(2,n)=5*(-2+3*n+5*n^2)= 5*(1+n)*(-2+5*n).
%e L(2; n) := A060922(n+2,2)= A060929(n) = (1+n)*((4+5*n)*L(n+2)+(-2+5*n)*L(n+1))/(2*5).
%Y A061188(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle).
%K sign,tabl
%O 0,2
%A _Wolfdieter Lang_, Apr 20 2001