login
A005283
Number of permutations of (1,...,n) having n-5 inversions (n>=5).
(Formerly M3905)
5
1, 5, 20, 76, 285, 1068, 4015, 15159, 57486, 218895, 836604, 3208036, 12337630, 47572239, 183856635, 712033264, 2762629983, 10736569602, 41788665040, 162869776650, 635562468075, 2482933033659, 9710010151831, 38008957336974, 148912655255315, 583885852950802
OFFSET
5,2
COMMENTS
Sequence is a diagonal of the triangle A008302 (number of permutations of (1,...,n) with k inversions; see Table 1 of the Margolius reference). - Emeric Deutsch, Aug 02 2014
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.14., p.356.
R. K. Guy, personal communication.
E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. H. Margolius, Permutations with inversions, J. Integ. Seqs. Vol. 4 (2001), #01.2.4.
R. H. Moritz and R. C. Williams, A coin-tossing problem and some related combinatorics, Math. Mag., 61 (1988), 24-29.
FORMULA
a(n) = 2^(2*n-6)/sqrt(Pi*n)*Q*(1+O(n^{-1})), where Q is a digital search tree constant, Q = 0.2887880951... (see A048651). - corrected by Vaclav Kotesovec, Mar 16 2014
EXAMPLE
a(6)=5 because we have 213456, 132456, 124356, 123546, and 123465.
MAPLE
f := (x, n)->product((1-x^j)/(1-x), j=1..n); seq(coeff(series(f(x, n), x, n+2), x, n-5), n=5..40); # Barbara Haas Margolius, May 31 2001
MATHEMATICA
Table[SeriesCoefficient[Product[(1-x^j)/(1-x), {j, 1, n}], {x, 0, n-5}], {n, 5, 25}] (* Vaclav Kotesovec, Mar 16 2014 *)
KEYWORD
nonn
EXTENSIONS
More terms, asymptotic formula from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), May 31 2001
Definition clarified by Emeric Deutsch, Aug 02 2014
STATUS
approved