The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A057552 a(n) = Sum_{k=0..n} C(2k+2,k). 28
 1, 5, 20, 76, 286, 1078, 4081, 15521, 59279, 227239, 873885, 3370029, 13027729, 50469889, 195892564, 761615284, 2965576714, 11563073314, 45141073924, 176423482324, 690215089744, 2702831489824, 10593202603774, 41550902139550, 163099562175850, 640650742051802 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 21. Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023. A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 59. FORMULA G.f.: 1/2*(2*x+(1-4*x)^(1/2)-1)/(1-4*x)^(1/2)/x^2/(-1+x). - Vladeta Jovovic, Sep 10 2003 D-finite with recurrence: n*(n+2)*a(n) = (5*n^2+8*n+2)*a(n-1) - 2*(n+1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 11 2012 a(n) ~ 2^(2*n+4)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 11 2012 a(n) = Sum_{k=1..n+1} k*A000108(k) = Sum_{k=1..n+1} A001791(k) = (A000108(n+1) * (4*n + 6 - (n+2)*hypergeom([1,-n-1], [-n-1/2], 1/4]) - 1)/2. a(n) = Sum_{k=1..n+1} Sum_{i=1..k} C(i+k-1,k). - Wesley Ivan Hurt, Sep 19 2017 MAPLE a:= n->add(binomial(2*j+2, j), j=0..n): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 25 2006 MATHEMATICA Table[Sum[Binomial[2k+2, k], {k, 0, n}], {n, 0, 20}] (* or *) Table[SeriesCoefficient[1/2*(2*x+(1-4*x)^(1/2)-1)/(1-4*x)^(1/2)/x^2/(-1+x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 11 2012 *) Table[(CatalanNumber[n + 1] (4 n + 6 - (n + 2) Hypergeometric2F1[1, -n-1, -n-1/2, 1/4]) - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *) PROG (PARI) a(n) = sum(k=0, n, binomial(2*k+2, k)); \\ Michel Marcus, Oct 04 2016 CROSSREFS Cf. A000108, A001791. Sequence in context: A061278 A000758 A005283 * A300918 A269708 A295347 Adjacent sequences: A057549 A057550 A057551 * A057553 A057554 A057555 KEYWORD nonn,easy AUTHOR Clark Kimberling, Sep 07 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 28 12:54 EDT 2024. Contains 372913 sequences. (Running on oeis4.)