OFFSET
0,2
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Jean-Luc Baril, Pamela E. Harris, Kimberly J. Harry, Matt McClinton, and José L. Ramírez, Enumerating runs, valleys, and peaks in Catalan words, arXiv:2404.05672 [math.CO], 2024. See p. 21.
Jean-Luc Baril, Sergey Kirgizov, and Mehdi Naima, A lattice on Dyck paths close to the Tamari lattice, arXiv:2309.00426 [math.CO], 2023.
A. V. Kitaev and A. Vartanian, Algebroid Solutions of the Degenerate Third Painlevé Equation for Vanishing Formal Monodromy Parameter, arXiv:2304.05671 [math.CA], 2023. See p. 59.
FORMULA
G.f.: 1/2*(2*x+(1-4*x)^(1/2)-1)/(1-4*x)^(1/2)/x^2/(-1+x). - Vladeta Jovovic, Sep 10 2003
D-finite with recurrence: n*(n+2)*a(n) = (5*n^2+8*n+2)*a(n-1) - 2*(n+1)*(2*n+1)*a(n-2). - Vaclav Kotesovec, Oct 11 2012
a(n) ~ 2^(2*n+4)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 11 2012
a(n) = Sum_{k=1..n+1} k*A000108(k) = Sum_{k=1..n+1} A001791(k) = (A000108(n+1) * (4*n + 6 - (n+2)*hypergeom([1,-n-1], [-n-1/2], 1/4]) - 1)/2.
a(n) = Sum_{k=1..n+1} Sum_{i=1..k} C(i+k-1,k). - Wesley Ivan Hurt, Sep 19 2017
MAPLE
a:= n->add(binomial(2*j+2, j), j=0..n): seq(a(n), n=0..24); # Zerinvary Lajos, Oct 25 2006
MATHEMATICA
Table[Sum[Binomial[2k+2, k], {k, 0, n}], {n, 0, 20}]
(* or *)
Table[SeriesCoefficient[1/2*(2*x+(1-4*x)^(1/2)-1)/(1-4*x)^(1/2)/x^2/(-1+x), {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 11 2012 *)
Table[(CatalanNumber[n + 1] (4 n + 6 - (n + 2) Hypergeometric2F1[1, -n-1, -n-1/2, 1/4]) - 1)/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 03 2016 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*k+2, k)); \\ Michel Marcus, Oct 04 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Sep 07 2000
STATUS
approved