login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057555
Lexicographic ordering of N x N, where N = {1,2,3...}.
8
1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 3, 1, 1, 4, 2, 3, 3, 2, 4, 1, 1, 5, 2, 4, 3, 3, 4, 2, 5, 1, 1, 6, 2, 5, 3, 4, 4, 3, 5, 2, 6, 1, 1, 7, 2, 6, 3, 5, 4, 4, 5, 3, 6, 2, 7, 1, 1, 8, 2, 7, 3, 6, 4, 5, 5, 4, 6, 3, 7, 2, 8, 1, 1, 9, 2, 8, 3, 7, 4, 6, 5, 5, 6, 4, 7, 3, 8, 2, 9, 1, 1, 10, 2, 9, 3, 8, 4, 7, 5, 6, 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 1, 11, 2, 10, 3, 9, 4, 8, 5, 7, 6, 6, 7, 5, 8, 4, 9, 3, 10, 2, 11, 1, 1, 12, 2, 11, 3, 10, 4, 9, 5, 8, 6, 7, 7, 6, 8, 5, 9, 4, 10, 3, 11, 2, 12, 1
OFFSET
1,4
FORMULA
a(2n) = A004736(n), a(2n+1) = A002260(n). - Michael Somos, Mar 06 2004
Let p(i,j) be the position of (i,j) in the ordering. Then p(i,j) = ((i+j)^2-i-3j+2)/2. Inversely, the pair (i,j) in a given position p is given by i=p-q(q-1)/2 and j=q+1-i, where q=floor((1+sqrt(8k-7))/2).
EXAMPLE
Flatten the ordered lattice points (1,1) < (1,2) < (2,1) < (1,3) < (2,2) < ... as 1,1, 1,2, 2,1, 1,3, 2,2, ...
MATHEMATICA
lexicographicLattice[{dim_, maxHeight_}]:= Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1, {dim}], 1]&, maxHeight], 1]; Flatten@lexicographicLattice[{2, 12}] (* Peter J. C. Moses, Feb 10 2011 *)
u[x_] := Floor[3/2 + Sqrt[2*x]]; v[x_] := Floor[1/2 + Sqrt[2*x]]; n[x_] := x - v[x]*(v[x] - 1)/2; k[x_] := 1 - x + u[x]*(u[x] - 1)/2; Flatten[Table[{n[m], k[m]}, {m, 45}]] (* L. Edson Jeffery, Jun 20 2015 *)
PROG
(PARI) a(n)= if(n<1, 0, 1+(-1)^(n%2) * (binomial((n+1)%2+(sqrtint(4*n)+1)\2, 2)-n\2)) /* Michael Somos, Mar 06 2004 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Clark Kimberling, Sep 07 2000
EXTENSIONS
Extended by Clark Kimberling, Feb 10 2011
STATUS
approved