login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343068
Multiplicative with a(p^e) = e*a(p-1).
2
1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 2, 2, 2, 1, 2, 4, 4, 2, 2, 4, 1, 2, 2, 3, 4, 2, 3, 2, 2, 2, 2, 5, 2, 4, 2, 4, 4, 2, 2, 6, 6, 1, 1, 4, 4, 2, 2, 4, 2, 4, 4, 4, 4, 3, 4, 3, 2, 2, 2, 4, 4, 2, 2, 6, 4, 2, 2, 8, 2, 2, 2, 6, 6, 4, 4, 4, 2, 2, 2, 8, 4, 6, 6, 2, 8, 1
OFFSET
1,4
LINKS
FORMULA
a(2^n) = n*a(2-1) = n.
EXAMPLE
a(2) = a(2-1) = 1; a(3) = a(3-1) = 1.
MAPLE
a:= proc(n) option remember; `if`(n=1, 1,
mul(i[2]*a(i[1]-1), i=ifactors(n)[2]))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Apr 04 2021
MATHEMATICA
a[1] = 1; a[p_, s_]:= a[p, s]=s a[p-1];
a[n_]:=a[n]= Module[{aux = FactorInteger[n]}, Product[a[aux[[i, 1]], aux[[i, 2]]], {i, Length[aux]}]]; Table[a[n], {n, 100}]
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = f[k, 2]*a(f[k, 1]-1); f[k, 2] = 1); factorback(f); \\ Michel Marcus, Apr 23 2021
CROSSREFS
Sequence in context: A175062 A139767 A207822 * A370489 A057555 A075532
KEYWORD
nonn,mult
AUTHOR
STATUS
approved