login
A175062
An arrangement of permutations. Irregular table read by rows: Read A175061(n) in binary from left to right. Row n contains the lengths of the runs of 0's and 1's.
1
1, 1, 2, 2, 1, 1, 3, 2, 1, 2, 3, 2, 3, 1, 2, 1, 3, 3, 2, 1, 3, 1, 2, 1, 4, 2, 3, 1, 4, 3, 2, 1, 3, 2, 4, 1, 3, 4, 2, 1, 2, 3, 4, 1, 2, 4, 3, 2, 4, 1, 3, 2, 4, 3, 1, 2, 3, 1, 4, 2, 3, 4, 1, 2, 1, 3, 4, 2, 1, 4, 3, 3, 4, 1, 2, 3, 4, 2, 1, 3, 2, 1, 4, 3, 2, 4, 1, 3, 1, 2, 4, 3, 1, 4, 2, 4, 3, 1, 2, 4, 3, 2, 1, 4, 2
OFFSET
1,3
COMMENTS
Let F(n) = sum{k=1 to n} k!. Then rows F(n-1)+1 to F(n) are the permutations of (1,2,3,...,n). (And each row in this range is made up of exactly n terms, obviously.)
EXAMPLE
A175061(10) = 536 in binary is 1000011000. This contains a run of one 1, followed by a run of four 0's, followed by a run of two 1's, followed finally by a run of three 0's. So row 10 consists of the run lengths (1,4,2,3), a permutation of (1,2,3,4).
CROSSREFS
Sequence in context: A117545 A047000 A288915 * A139767 A207822 A343068
KEYWORD
base,nonn,tabf
AUTHOR
Leroy Quet, Dec 12 2009
EXTENSIONS
Extended by Ray Chandler, Dec 16 2009
STATUS
approved