The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A207822 Number of distinct irreducible factors of n-th Zeckendorf polynomial. 0
 0, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 3, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 2, 2, 1, 2, 3, 2, 1, 2, 3, 3, 2, 2, 1, 2, 3, 1, 2, 2, 1, 2, 2, 2, 2, 3, 3, 1, 3, 1, 1, 3, 3, 1, 3, 1, 3, 2, 3, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 2, 2, 1, 3, 2, 2, 2, 1, 4, 3, 1, 2, 3, 2, 1, 3, 2, 3, 1, 3, 1, 2, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,6 COMMENTS The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813. LINKS Table of n, a(n) for n=1..99. EXAMPLE Z(10,n) = x^4 + x = x(x + 1)(x^2 - x + 1), so a(10)=3. MATHEMATICA fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], {n, 1, 500}]; b[n_] := Reverse[Table[x^k, {k, 0, n}]] p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] TableForm[Table[{n, p[n, x], FactorList[p[n, x]]}, {n, 1, 10}]] Table[-1 + Length[FactorList[p[n, x]]], {n, 1, 120}] CROSSREFS Cf. A207813. Sequence in context: A288915 A175062 A139767 * A343068 A057555 A075532 Adjacent sequences: A207819 A207820 A207821 * A207823 A207824 A207825 KEYWORD nonn AUTHOR Clark Kimberling, Feb 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 4 23:31 EST 2024. Contains 370537 sequences. (Running on oeis4.)