login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A207819
Number of permutations of [n] with a fixed point and/or a succession.
7
0, 1, 1, 6, 20, 106, 618, 4358, 34836, 313592, 3135988, 34498646, 414007634, 5382362086, 75356174332, 1130382058576, 18086649408624, 307480839465174, 5534775895914982, 105162728081809146, 2103289132221173216, 44169707042511725964, 971745847021319655464, 22350404337704558809666
OFFSET
0,4
COMMENTS
A succession of a permutation p is the appearance of [k,k+1], e.g. in 23541, 23 is a succession.
FORMULA
a(n) = n! - A209322(n). - Robert Israel, Mar 27 2017
EXAMPLE
For n=4 the only permutations that do not count are 2143, 2413, 3142 and 4321, so a(4) = 4!-4 = 20.
MATHEMATICA
F[{}] = 1; F[S_] := Sum[G[S ~Complement~ {s}, s-1], {s, S ~Complement~ {Length[S]}}];
G[{}, _] = 1; G[S_, t_] := G[S, t] = Sum[G[S ~Complement~ {s}, s-1], {s, S ~Complement~ {t, Length[S]}}];
Table[a[n] = n! - F[Range[n]]; Print[n, " ", a[n]]; a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 05 2019, using Robert Israel's code for A209322 *)
PROG
(PARI) A207819(n)={my(p, c); sum(k=1, n!, p=numtoperm(n, k); (c=(p[1]==1)) || for(j=2, n, p[j]!=j & p[j]-1!=p[j-1] & next; c++; break); c)} \\ M. F. Hasler, Jan 13 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Jan 10 2013
EXTENSIONS
Values a(1..10) double-checked by M. F. Hasler, Jan 13 2013
a(11)-a(14) from Alois P. Heinz, Jan 15 2013
a(15)-a(20) from Robert Israel, Mar 27 2017
a(21)-a(23) from Alois P. Heinz, Jul 04 2021
STATUS
approved