login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A151493 Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, -1), (-1, 0), (-1, 1), (0, 1), (1, -1), (1, 0), (1, 1)}. 0
1, 1, 6, 20, 114, 529, 3050, 16333, 96291, 554489, 3343913, 20074658, 123474818, 761154695, 4758617798, 29876386844, 189275072084, 1204491672779, 7713591678563, 49602001416920, 320478996972260, 2078111745252647, 13525786891484513, 88309928176783985, 578342399955533489, 3797738127548969927 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..25.

M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, ArXiv 0810.4387 [math.CO], 2008.

FORMULA

G.f.: Int(Int(2+Int(6*(1-x)*(3-Int(4*(1-2*x-35*x^2)^(3/2)*((12*x^2+1)*(-2520*x^6+420*x^5+930*x^4-225*x^3+385*x^2+25*x-5)*hypergeom([9/4, 11/4],[3],64*(x^2+x+1)*x^2/(12*x^2+1)^2)+6*(280*x^6-980*x^5+1830*x^4 +1875*x^3-640*x^2+15*x+5)*x^2*hypergeom([11/4, 13/4],[4],64*(x^2+x+1)*x^2/(12*x^2+1)^2))/((12*x^2+1)^(11/2)*(1-x)^2),x))/(1-2*x-35*x^2)^(5/2),x),x),x)/(x^2*(2*x+1)). - Mark van Hoeij, Aug 27 2014

MATHEMATICA

aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]

CROSSREFS

Sequence in context: A211953 A266846 A207819 * A036755 A045470 A117998

Adjacent sequences:  A151490 A151491 A151492 * A151494 A151495 A151496

KEYWORD

nonn,walk

AUTHOR

Manuel Kauers, Nov 18 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 7 11:15 EST 2016. Contains 278872 sequences.