|
|
A151495
|
|
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of n steps taken from {(-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1)}
|
|
0
|
|
|
1, 1, 6, 22, 112, 556, 2992, 16416, 93040, 537004, 3156300, 18805948, 113415860, 690920348, 4246311084, 26297470908, 163962253192, 1028405157316, 6484807032820, 41086983729464, 261446728122772, 1670163037965324, 10707288651740680, 68867225024134936, 444264596237129308, 2873850125874850068
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
M. Bousquet-Mélou and M. Mishna, 2008. Walks with small steps in the quarter plane, ArXiv 0810.4387.
|
|
MATHEMATICA
|
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, -1 + j, -1 + n] + aux[-1 + i, j, -1 + n] + aux[-1 + i, 1 + j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[i, 1 + j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n]]; Table[Sum[aux[0, k, n], {k, 0, n}], {n, 0, 25}]
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,walk
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|