login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100300
Number of dissections of a convex n-gon by nonintersecting diagonals into an odd number of regions.
2
1, 1, 6, 22, 99, 451, 2140, 10396, 51525, 259429, 1323362, 6824434, 35519687, 186346759, 984400760, 5231789176, 27954506505, 150079713481, 809181079294, 4379654830222, 23787413800491, 129607968854731, 708230837732436, 3880366912218772, 21312485647242829, 117321536967959341
OFFSET
3,3
LINKS
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
FORMULA
a(n) = Sum_{k=1..floor((n-1)/2)} C(n-3, 2*k-2)*C(n+2*k-3, 2*k-2)/(2*k-1).
G.f.: (1/8)*( z + z^2 - z*sqrt(1-6*z+z^2) - 4*z^2/(1+z) ).
(n-1)*(2*n-7)*a(n) = (2*n-5)*(5*n-19)*a(n-1) + (5*n-11)*(2*n-7)*a(n-2) - (2*n-5)*(n-5)*a(n-3). - Vladeta Jovovic, Nov 12 2004
From Vladeta Jovovic, Nov 15 2004: (Start)
a(n) = (A001003(n-2) - (-1)^n)/2.
a(n) = A100299(n) - (-1)^n. (End)
Asymptotic (same as for A100299): a(n) ~ sqrt(3*sqrt(2)-4)*(3+2*sqrt(2))^(n-1)/(8*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
From G. C. Greubel, Feb 04 2023: (Start)
a(n) = ( (10*(n-5)^2 + 37*(n-5) + 30)*a(n-1) + (10*(n-5)^2 + 43*(n-5) + 42)*a(n-2) - (n-5)*(2*n-5)*a(n-3) )/((n-1)*(2*n-7)), with a(3) = a(4) = 1, a(5) = 6.
a(n) = Hypergeometric4F3([n/2, (n+1)/2, (3-n)/2, (4-n)/2], [1/2, 1, 3/2], 1). (End)
EXAMPLE
a(5)=6 because for a convex pentagon ABCDE we obtain dissections with an odd number of regions by one of the following sets of diagonals: {},{AC,AD}, {BD,BE}, {CE,CA}, {DA,DB} and {EB,EC}.
MAPLE
a:=n-> sum(binomial(n-3, 2*k-2)*binomial(n+2*k-3, 2*k-2)/(2*k-1), k=1..floor((n-1)/2));
seq(a(n), n=3..40);
MATHEMATICA
Take[CoefficientList[Series[-1/2*x^2/(1+x)+x/8+x^2/8-x/8*Sqrt[1-6*x+x^2 ], {x, 0, 40}], x], {4, -1}] (* Vaclav Kotesovec, Oct 17 2012 *)
PROG
(PARI) my(x='x+O('x^66)); Vec(x*((1+x)^2 -(1+x)*sqrt(1-6*x+x^2) -4*x)/(8*(1+x))) \\ Joerg Arndt, May 12 2013
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( x*((1+x)^2 -(1+x)*Sqrt(1-6*x+x^2) -4*x)/(8*(1+x)) )); // G. C. Greubel, Feb 04 2023
(SageMath)
def A100300(n): return sum(binomial(n-3, 2*k)*binomial(n+2*k-1, 2*k)/(2*k+1) for k in range((n-3)//2 +1))
[A100300(n) for n in range(3, 41)] # G. C. Greubel, Feb 04 2023
CROSSREFS
Sequence in context: A349834 A240049 A078418 * A027296 A179601 A151495
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Nov 12 2004
STATUS
approved