login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of dissections of a convex n-gon by nonintersecting diagonals into an odd number of regions.
2

%I #24 Feb 05 2023 02:00:25

%S 1,1,6,22,99,451,2140,10396,51525,259429,1323362,6824434,35519687,

%T 186346759,984400760,5231789176,27954506505,150079713481,809181079294,

%U 4379654830222,23787413800491,129607968854731,708230837732436,3880366912218772,21312485647242829,117321536967959341

%N Number of dissections of a convex n-gon by nonintersecting diagonals into an odd number of regions.

%H Vincenzo Librandi, <a href="/A100300/b100300.txt">Table of n, a(n) for n = 3..200</a>

%H P. Flajolet and M. Noy, <a href="http://dx.doi.org/10.1016/S0012-365X(98)00372-0">Analytic combinatorics of non-crossing configurations</a>, Discrete Math., 204, 203-229, 1999.

%F a(n) = Sum_{k=1..floor((n-1)/2)} C(n-3, 2*k-2)*C(n+2*k-3, 2*k-2)/(2*k-1).

%F G.f.: (1/8)*( z + z^2 - z*sqrt(1-6*z+z^2) - 4*z^2/(1+z) ).

%F (n-1)*(2*n-7)*a(n) = (2*n-5)*(5*n-19)*a(n-1) + (5*n-11)*(2*n-7)*a(n-2) - (2*n-5)*(n-5)*a(n-3). - _Vladeta Jovovic_, Nov 12 2004

%F From _Vladeta Jovovic_, Nov 15 2004: (Start)

%F a(n) = (A001003(n-2) - (-1)^n)/2.

%F a(n) = A100299(n) - (-1)^n. (End)

%F Asymptotic (same as for A100299): a(n) ~ sqrt(3*sqrt(2)-4)*(3+2*sqrt(2))^(n-1)/(8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Oct 17 2012

%F From _G. C. Greubel_, Feb 04 2023: (Start)

%F a(n) = ( (10*(n-5)^2 + 37*(n-5) + 30)*a(n-1) + (10*(n-5)^2 + 43*(n-5) + 42)*a(n-2) - (n-5)*(2*n-5)*a(n-3) )/((n-1)*(2*n-7)), with a(3) = a(4) = 1, a(5) = 6.

%F a(n) = Hypergeometric4F3([n/2, (n+1)/2, (3-n)/2, (4-n)/2], [1/2, 1, 3/2], 1). (End)

%e a(5)=6 because for a convex pentagon ABCDE we obtain dissections with an odd number of regions by one of the following sets of diagonals: {},{AC,AD}, {BD,BE}, {CE,CA}, {DA,DB} and {EB,EC}.

%p a:=n-> sum(binomial(n-3,2*k-2)*binomial(n+2*k-3,2*k-2)/(2*k-1), k=1..floor((n-1)/2));

%p seq(a(n), n=3..40);

%t Take[CoefficientList[Series[-1/2*x^2/(1+x)+x/8+x^2/8-x/8*Sqrt[1-6*x+x^2 ], {x,0,40}], x],{4,-1}] (* _Vaclav Kotesovec_, Oct 17 2012 *)

%o (PARI) my(x='x+O('x^66)); Vec(x*((1+x)^2 -(1+x)*sqrt(1-6*x+x^2) -4*x)/(8*(1+x))) \\ _Joerg Arndt_, May 12 2013

%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( x*((1+x)^2 -(1+x)*Sqrt(1-6*x+x^2) -4*x)/(8*(1+x)) )); // _G. C. Greubel_, Feb 04 2023

%o (SageMath)

%o def A100300(n): return sum(binomial(n-3,2*k)*binomial(n+2*k-1,2*k)/(2*k+1) for k in range((n-3)//2 +1))

%o [A100300(n) for n in range(3,41)] # _G. C. Greubel_, Feb 04 2023

%Y Cf. A001003, A100299.

%K nonn

%O 3,3

%A _Emeric Deutsch_, Nov 12 2004