login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A207823 Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order). 8
1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Riordan array (1/(1-4*x+x^2), x/(1-4*x+x^2)).

Subtriangle of the triangle given by (0, 4, -1/4, 1/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Unsigned version of triangles in A124029 and in A159764.

For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4} containing k-1 letters equal 4 and avoiding 01. - Milan Janjic, Dec 20 2016

LINKS

Table of n, a(n) for n=0..54.

Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, J. Int. Seq. 21 (2018), #18.1.2.

Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.

FORMULA

Recurrence: T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - T(n-2,k).

Diagonal sums are 4^n = A000302(n).

Row sums are A004254(n+1).

G.f.: 1/(1-4*x+x^2-y*x)

T(n,n) = 1, T(n+1,n) = 4*n+4 = A008586(n+1), T(n+2,n) = (n+1)*(8n+15) = A139278(n+1).

T(n,0) = A001353(n+1).

EXAMPLE

Triangle begins:

1

4, 1

15, 8, 1

56, 46, 12, 1

209, 232, 93, 16, 1

780, 1091, 592, 156, 20, 1

2911, 4912, 3366, 1200, 235, 24, 1

10864, 21468, 17784, 8010, 2120, 330, 28, 1

40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1

151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1

...

Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:

1

0, 1

0, 4, 1

0, 15, 8, 1

0, 56, 46, 12, 1

0, 209, 232, 93, 16, 1

...

MATHEMATICA

With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)

CROSSREFS

Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Sequence in context: A095307 A159764 A124029 * A056920 A123382 A197653

Adjacent sequences: A207820 A207821 A207822 * A207824 A207825 A207826

KEYWORD

easy,nonn,tabl

AUTHOR

Philippe Deléham, Feb 20 2012

EXTENSIONS

Offset changed to 0 by Georg Fischer, Feb 18 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 09:24 EDT 2023. Contains 361688 sequences. (Running on oeis4.)