login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125662
A convolution triangle of numbers based on A001906 (even-indexed Fibonacci numbers).
9
1, 3, 1, 8, 6, 1, 21, 25, 9, 1, 55, 90, 51, 12, 1, 144, 300, 234, 86, 15, 1, 377, 954, 951, 480, 130, 18, 1, 987, 2939, 3573, 2305, 855, 183, 21, 1, 2584, 8850, 12707, 10008, 4740, 1386, 245, 24, 1, 6765, 26195, 43398, 40426, 23373, 8715, 2100, 316, 27, 1
OFFSET
0,2
COMMENTS
Subtriangle of the triangle given by [0,3,-1/3,1/3,0,0,0,0,0,...] DELTA [1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. Unsigned version of A123965.
From Philippe Deléham, Feb 19 2012: (Start)
Riordan array (1/(1-3*x+x^2), x/(1-3*x+x^2)).
Equals A078812*A007318 as infinite lower triangular matrices.
Triangle of coefficients of Chebyshev's S(n,x+3) polynomials (exponents of x in increasing order). (End)
For 1 <= k <= n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3} containing k-1 letters equal 3 and avoiding 01. - Milan Janjic, Dec 20 2016
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
FORMULA
T(n,k) = T(n-1,k-1) + 3*T(n-1,k) - T(n-2,k); T(0,0)=1; T(n,k)=0 if k < 0 or k > n.
Sum_{k=0..n} T(n, k) = A001353(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000244(n+1).
G.f.: 1/(1-3*x+x^2-y*x). - Philippe Deléham, Feb 19 2012
From G. C. Greubel, Aug 20 2023: (Start)
T(n, k) = abs( [x^k]( ChebyshevU(n, (3-x)/2) ) ).
Sum_{k=0..n} (-1)^k*T(n, k) = A000027(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000225(n). (End)
EXAMPLE
Triangle begins:
1;
3, 1;
8, 6, 1;
21, 25, 9, 1;
55, 90, 51, 12, 1;
...
Triangle [0,3,-1/3,1/3,0,0,0,...] DELTA [1,0,0,0,0,0,...] begins:
1;
0, 1;
0, 3, 1;
0, 8, 6, 1;
0, 21, 25, 9, 1;
0, 55, 90, 51, 12, 1;
...
MATHEMATICA
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 3 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Table[Abs[CoefficientList[ChebyshevU[n, (x-3)/2], x]], {n, 0, 12}]//Flatten (* G. C. Greubel, Aug 20 2023 *)
PROG
(Magma)
m:=12;
R<x>:=PowerSeriesRing(Integers(), m+2);
A125662:= func< n, k | Abs( Coefficient(R!( Evaluate(ChebyshevU(n+1), (3-x)/2) ), k) ) >;
[A125662(n, k): k in [0..n], n in [0..m]]; // G. C. Greubel, Aug 20 2023
(SageMath)
def A125662(n, k): return abs( ( chebyshev_U(n, (3-x)/2) ).series(x, n+2).list()[k] )
flatten([[A125662(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 20 2023
CROSSREFS
Diagonal sums: A000244(powers of 3).
Row sums: A001353 (n+1).
Diagonals: A001906(n+1), A001871.
Cf. Triangle of coefficients of Chebyshev's S(n,x+k) polynomials: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967 for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5 respectively.
Sequence in context: A030523 A207815 A123965 * A124025 A257488 A286416
KEYWORD
easy,nonn,tabl
AUTHOR
Philippe Deléham, Jan 28 2007
EXTENSIONS
a(45) corrected and a(51) added by Philippe Deléham, Feb 19 2012
STATUS
approved