login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125664
Numbers such that the right half of the digits form a prime and the left half do not.
2
12, 13, 15, 17, 42, 43, 45, 47, 62, 63, 65, 67, 82, 83, 85, 87, 92, 93, 95, 97, 102, 103, 105, 107, 112, 113, 115, 117, 122, 123, 125, 127, 132, 133, 135, 137, 142, 143, 145, 147, 152, 153, 155, 157, 162, 163, 165, 167, 172, 173, 175, 177, 182, 183, 185, 187
OFFSET
1,1
COMMENTS
If the number of digits in the number is odd > 1, then the middle digit is ignored.
LINKS
FORMULA
The left half of an n-digit number is the first floor(n/2) digits. The right half of an n-digit number is the last floor(n/2) digits.
EXAMPLE
12 is the first number with this property.
PROG
(PARI) rightprime(n) = { local(x, ln, y, lp, rp); for(x=1, n, y=Str(x); if(x > 9, ln=floor(length(y)/2), ln=1); lp = eval(left(y, ln)); rp = eval(right(y, ln)); if(!isprime(lp)&& isprime(rp), print1(x", ") ) ) }
(Python)
from sympy import isprime
def ok(n):
if n < 10: return False
s = str(n)
m = len(s)//2
return isprime(int(s[-m:])) and not isprime(int(s[:m]))
print([k for k in range(188) if ok(k)]) # Michael S. Branicky, Dec 13 2021
CROSSREFS
Cf. A125524.
Sequence in context: A127354 A226099 A179512 * A262210 A074164 A076085
KEYWORD
base,easy,nonn
AUTHOR
Cino Hilliard, Jan 29 2007
STATUS
approved