OFFSET
0,2
COMMENTS
FORMULA
T(n,k) = (-1)^(n-k)*A125662(n,k).
Recurrence: T(n,k) = (-3)*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
G.f.: 1/(1+3*x+x^2-y*x).
EXAMPLE
Triangle begins:
1;
-3, 1;
8, -6, 1;
-21, 25, -9, 1;
55, -90, 51, -12, 1;
-144, 300, -234, 86, -15, 1;
377, -954, 951, -480, 130, -18, 1;
-987, 2939, -3573, 2305, -855, 183, -21, 1;
2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1;
-6765, 26195, -43398, 40426, -23373, 8715, -2100, 316, -27, 1;
Triangle (0, -3, 1/3, -1/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins:
1;
0, 1;
0, -3, 1;
0, 8, -6, 1;
0, -21, 25, -9, 1;
0, 55, -90, 51, -12, 1;
0, -144, 300, -234, 86, -15, 1;
...
MATHEMATICA
T[_?Negative, _] = 0; T[0, 0] = 1; T[0, _] = 0; T[n_, n_] = 1; T[n_, k_] := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] - 3 T[n - 1, k];
Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 22 2018 *)
PROG
(Sage)
@CachedFunction
def A207815(n, k):
if n< 0: return 0
if n==0: return 1 if k == 0 else 0
for n in (0..9): [A207815(n, k) for k in (0..n)] # Peter Luschny, Nov 20 2012
(PARI) row(n) = Vecrev(subst(polchebyshev(n, 2, x/2), x, x-3))
tabf(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Jun 22 2018
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Feb 20 2012
EXTENSIONS
T(8,0) corrected by Jean-François Alcover, Jun 22 2018
STATUS
approved