OFFSET
0,2
COMMENTS
FORMULA
Appears to be the matrix product (I-S)*P^(-2), where I is the identity, P is Pascal's triangle A007318 and S is A132440, the infinitesimal generator of P. Cf. A055137 (= (I-S)*P) and A103283 (= (I-S)*P^(-1)). - Peter Bala, Nov 28 2011
EXAMPLE
The monic characteristic polynomial of the matrix [3 1 1 / 1 3 1 / 1 1 3] is x^3 - 9x^2 + 24x - 20; so T(3,0)=-20, T(3,1)=24, T(3,2)=-9, T(3,3)=1.
Triangle begins:
1;
-3,1;
8,-6,1;
-20,24,-9,1;
48,-80,48,-12,1;
...
MAPLE
with(linalg): a:=proc(i, j) if i=j then 3 else 1 fi end: 1; for n from 1 to 10 do seq(coeff(expand(x*charpoly(matrix(n, n, a), x)), x^k), k=1..n+1) od; # yields the sequence in triangular form
MATHEMATICA
M[n_] := Table[If[i == j, 3, 1], {i, 1, n}, {j, 1, n}];
P[n_] := P[n] = CharacteristicPolynomial[M[n], x];
row[n_] := row[n] = If[n == 0, {1}, CoefficientList[P[n]/Coefficient[P[n], x, n], x]];
T[n_, k_] := row[n][[k]];
Table[T[n, k], {n, 0, 10}, {k, 1, n+1}] // Flatten (* Jean-François Alcover, Aug 06 2024 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Emeric Deutsch, Mar 19 2005
STATUS
approved