This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123382 Triangle T(n,k), 0 <= k <= n, defined by : T(n,k) = 0 if k < 0, T(0,k) = 0^k, (n+2)*(2*n-2*k+1)*T(n,k) = (2*n+1)*( 4*(2*n-2*k+1)*T(n-1,k-1) + (n+2*k+2)*T(n-1,k) ). 1
 1, 1, 4, 1, 15, 20, 1, 35, 168, 112, 1, 66, 714, 1680, 672, 1, 110, 2178, 11352, 15840, 4224, 1, 169, 5434, 51051, 156156, 144144, 27456, 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040, 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672, 1, 456, 42636, 1337220, 17073134 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS G. Kreweras explains that since the rows of A140136 are symmetric, they can be considered as linear combinations of the odd-indexed rows of the Pascal triangle. For instance, (1,1) = 1*(1,1) and (1,7,7,1) = 1*(1,3,3,1) + 4*(0,1,1,0) and (1,20,75,75,10,1) = 1*(1,5,10,10,5,1) + 15*(0,1,3,3,1) + 20*(0,0,1,1,0,0). These coefficients (1; 1, 4; 1, 15, 20;) are the rows of this triangle. - Michel Marcus, Nov 17 2014 LINKS G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened Germain Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du Bureau Universitaire de Recherche Opérationnelle}, Institut de Statistique, Université de Paris, 6 (1965). Germain Kreweras, page 93 of "Sur une classe de problèmes de dénombrement...", containing the defining formula for this sequence. FORMULA T(n,n) = A003645(n). EXAMPLE Triangle begins: 0: 1; 1: 1, 4; 2: 1, 15, 20; 3: 1, 35, 168, 112; 4: 1, 66, 714, 1680, 672; 5: 1, 110, 2178, 11352, 15840, 4224; 6: 1, 169, 5434, 51051, 156156, 144144, 27456; 7: 1, 245, 11830, 178035, 972400, 1953952, 1281280, 183040; 8: 1, 340, 23324, 520676, 4516798, 16102944, 22870848, 11202048, 1244672; ..... MATHEMATICA T[0, 0] := 1; T[0, k_] := 0; T[n_, k_] := T[n, k] = (2*n + 1)*(4*(2*n - 2*k + 1)*T[n - 1, k - 1] + (n + 2*k + 2)*T[n - 1, k])/((n + 2)*(2*n - 2*k + 1)); Table[If[k < 0, 0, T[n, k]], {n, 0, 5}, {k, 0, n}]//Flatten (* G. C. Greubel, Oct 13 2017 *) PROG (Sage) @CachedFunction def T(n, k):     if k < 0: return 0;     if n < 0: return 0;     if n == 0: return int( k==0 );     if k == 0: return 1;     return ( (2*n+1)*( 4*(2*n-2*k+1)*T(n-1, k-1) + (n+2*k+2)*T(n-1, k) ) ) / ((n+2)*(2*n-2*k+1)); for n in [0..16]:     print [T(n, k) for k in xrange(0, n+1)]; # Joerg Arndt, Nov 21 2014 CROSSREFS Sequence in context: A124029 A207823 A056920 * A197653 A146160 A059222 Adjacent sequences:  A123379 A123380 A123381 * A123383 A123384 A123385 KEYWORD nonn,tabl AUTHOR Philippe Deléham, Oct 13 2006 EXTENSIONS Corrected name, added more terms, Joerg Arndt, Nov 21 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 03:00 EST 2019. Contains 329836 sequences. (Running on oeis4.)