|
|
A123380
|
|
Values x of the solutions (x,y) of the Diophantine equation 5*(X-Y)^4 - 8*X*Y = 0 with X >= Y.
|
|
0
|
|
|
0, 120, 164616, 237056040, 341822489232, 492907330815000, 710772011684039448, 1024932747275425020360, 1477952310773874820172064, 2131206207202220378636535480, 3073197872833254563603629840680
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Sequence gives X values. To find Y values: b(n)=c(n)*(-1+d(n))which gives: 0, 108, 164160, 237038724, ...
|
|
LINKS
|
Table of n, a(n) for n=0..10.
Index entries for linear recurrences with constant coefficients, signature (1480,-54798,1480,-1).
|
|
FORMULA
|
a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 6 and c(n) = 38*c(n-1) - c(n-2), d(0) = 1, d(1) = 19 and d(n) = 38*d(n-1) - d(n-2).
From Max Alekseyev, Nov 13 2009: (Start)
For n>=4, a(n) = 1480*a(n-1) - 54798*a(n-2) + 1480*a(n-3) - a(n-4).
O.g.f.: 24*x*(5*x^2 -541*x +5)/((x^2 -38*x +1)*(x^2 -1442*x +1)). (End)
|
|
MATHEMATICA
|
CoefficientList[Series[24*x*(5*x^2 - 541*x + 5)/(x^2 - 38*x + 1)/(x^2 - 1442*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *)
LinearRecurrence[{1480, -54798, 1480, -1}, {0, 120, 164616, 237056040}, 20] (* Harvey P. Dale, Feb 22 2020 *)
|
|
PROG
|
(PARI) x='x+O('x^50); concat([0], Vec(24*x*(5*x^2 -541*x +5)/((x^2 -38*x +1)*(x^2 -1442*x +1)))) \\ G. C. Greubel, Oct 13 2017
|
|
CROSSREFS
|
Sequence in context: A322917 A184127 A068296 * A172805 A008701 A158043
Adjacent sequences: A123377 A123378 A123379 * A123381 A123382 A123383
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Mohamed Bouhamida, Oct 13 2006
|
|
EXTENSIONS
|
More terms from Max Alekseyev, Nov 13 2009
|
|
STATUS
|
approved
|
|
|
|