The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A123380 Values x of the solutions (x,y) of the Diophantine equation 5*(X-Y)^4 - 8*X*Y = 0 with X >= Y. 0
 0, 120, 164616, 237056040, 341822489232, 492907330815000, 710772011684039448, 1024932747275425020360, 1477952310773874820172064, 2131206207202220378636535480, 3073197872833254563603629840680 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Sequence gives X values. To find Y values: b(n)=c(n)*(-1+d(n))which gives: 0, 108, 164160, 237038724, ... LINKS Index entries for linear recurrences with constant coefficients, signature (1480,-54798,1480,-1). FORMULA a(n) = c(n)*(1+d(n)) with c(0) = 0, c(1) = 6 and c(n) = 38*c(n-1) - c(n-2), d(0) = 1, d(1) = 19 and d(n) = 38*d(n-1) - d(n-2). From Max Alekseyev, Nov 13 2009: (Start) For n>=4, a(n) = 1480*a(n-1) - 54798*a(n-2) + 1480*a(n-3) - a(n-4). O.g.f.: 24*x*(5*x^2 -541*x +5)/((x^2 -38*x +1)*(x^2 -1442*x +1)). (End) MATHEMATICA CoefficientList[Series[24*x*(5*x^2 - 541*x + 5)/(x^2 - 38*x + 1)/(x^2 - 1442*x + 1), {x, 0, 50}], x] (* G. C. Greubel, Oct 13 2017 *) LinearRecurrence[{1480, -54798, 1480, -1}, {0, 120, 164616, 237056040}, 20] (* Harvey P. Dale, Feb 22 2020 *) PROG (PARI) x='x+O('x^50); concat([0], Vec(24*x*(5*x^2 -541*x +5)/((x^2 -38*x +1)*(x^2 -1442*x +1)))) \\ G. C. Greubel, Oct 13 2017 CROSSREFS Sequence in context: A322917 A184127 A068296 * A172805 A008701 A158043 Adjacent sequences: A123377 A123378 A123379 * A123381 A123382 A123383 KEYWORD nonn AUTHOR Mohamed Bouhamida, Oct 13 2006 EXTENSIONS More terms from Max Alekseyev, Nov 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 14:14 EDT 2023. Contains 361384 sequences. (Running on oeis4.)