login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A146160 Period 4: repeat [1, 4, 1, 16]. 4
1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..93.

Index entries for linear recurrences with constant coefficients, signature (0,0,0,1).

FORMULA

Continued fraction of (8 + sqrt(78))/14.

GCD[4k - k^2, 5k^2, 20k - 20k^2, 16 - 32k + 16k^2] for k = 1,2,3,...

From Artur Jasinski, Oct 29 2008: (Start)

a(n) = 1 when n congruent to 1 or 3 mod 4.

a(n) = 4 when n congruent to 2 mod 4.

a(n) = 16 when n congruent to 0 mod 4. (End)

From Richard Choulet, Nov 03 2008: (Start)

a(n+4) = a(n).

a(n) = (9/2)*(-1)^n + (11/2) + 6*cos(Pi*n/2).

O.g.f.: f(z) = a(0)+a(1)*z+... = (1+4*z+z^2+16*z^3)/(1-z^4). (End)

a(n) = (1/6)*{28*(n mod 4) - 17*[(n+1) mod 4] + 10*[(n+2) mod 4] + [(n+3) mod 4]}, with n>=0. - Paolo P. Lava, Nov 06 2008

a(n) = (11/2) + 3*I^(n+1) - (9/2)*(-1)^n - 3*I^(1-n), with n>=0 and I=sqrt(-1). - Paolo P. Lava, May 04 2010

E.g.f.: sinh(x) + 20*(sinh(x/2))^2 - 12*(sin(x/2))^2. - G. C. Greubel, Feb 03 2016

a(n) = a(-n). - Wesley Ivan Hurt, Jun 15 2016

a(n) = A109008(n)^2. - R. J. Mathar, Feb 12 2019

MAPLE

A146160:=n->[1, 4, 1, 16][(n mod 4)+1]: seq(A146160(n), n=0..100); # Wesley Ivan Hurt, Jun 15 2016

MATHEMATICA

Table[GCD[4k - k^2, 5k^2, 20k - 20k^2, 16 - 32k + 16k^2], {k, 100}]

PROG

(MAGMA) &cat[[1, 4, 1, 16]^^20]; // Vincenzo Librandi, Feb 04 2016

(PARI) Vec((1+4*x+x^2+16*x^3)/(1-x^4) + O(x^100)) \\ Altug Alkan, Feb 04 2016

CROSSREFS

Cf. A010156, A145996. [Artur Jasinski, Oct 29 2008]

Sequence in context: A056920 A123382 A197653 * A059222 A117292 A062780

Adjacent sequences:  A146157 A146158 A146159 * A146161 A146162 A146163

KEYWORD

nonn,easy,mult

AUTHOR

Artur Jasinski, Oct 27 2008

EXTENSIONS

Choulet formula adapted for offset 1 from Wesley Ivan Hurt, Jun 15 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 10:45 EST 2019. Contains 329751 sequences. (Running on oeis4.)