login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A146160
Period 4: repeat [1, 4, 1, 16].
4
1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1, 4, 1, 16, 1
OFFSET
1,2
FORMULA
Continued fraction of (8 + sqrt(78))/14.
GCD(4k - k^2, 5k^2, 20k - 20k^2, 16 - 32k + 16k^2) for k = 1,2,3,...
From Artur Jasinski, Oct 29 2008: (Start)
a(n) = 1 when n congruent to 1 or 3 mod 4.
a(n) = 4 when n congruent to 2 mod 4.
a(n) = 16 when n congruent to 0 mod 4. (End)
From Richard Choulet, Nov 03 2008: (Start)
a(n+4) = a(n).
a(n) = (9/2)*(-1)^n + (11/2) + 6*cos(Pi*n/2).
O.g.f.: f(z) = a(0)+a(1)*z+... = (1+4*z+z^2+16*z^3)/(1-z^4). (End)
E.g.f.: sinh(x) + 20*(sinh(x/2))^2 - 12*(sin(x/2))^2. - G. C. Greubel, Feb 03 2016
a(n) = a(-n). - Wesley Ivan Hurt, Jun 15 2016
a(n) = A109008(n)^2. - R. J. Mathar, Feb 12 2019
From Amiram Eldar, Jan 01 2023: (Start)
Multiplicative with a(2) = 4, a(2^e) = 16 for e >= 2, and a(p^e) = 1 for p >= 3.
Dirichlet g.f.: zeta(s)*(12/4^s+3/2^s+1). (End)
MAPLE
A146160:=n->[1, 4, 1, 16][(n mod 4)+1]: seq(A146160(n), n=0..100); # Wesley Ivan Hurt, Jun 15 2016
MATHEMATICA
Table[GCD[4k - k^2, 5k^2, 20k - 20k^2, 16 - 32k + 16k^2], {k, 100}]
PROG
(Magma) &cat[[1, 4, 1, 16]^^20]; // Vincenzo Librandi, Feb 04 2016
(PARI) Vec((1+4*x+x^2+16*x^3)/(1-x^4) + O(x^100)) \\ Altug Alkan, Feb 04 2016
CROSSREFS
Cf. A010156, A145996. [Artur Jasinski, Oct 29 2008]
Sequence in context: A056920 A123382 A197653 * A059222 A117292 A062780
KEYWORD
nonn,easy,mult
AUTHOR
Artur Jasinski, Oct 27 2008
EXTENSIONS
Choulet formula adapted for offset 1 from Wesley Ivan Hurt, Jun 15 2016
STATUS
approved