login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Period 4: repeat [1, 4, 1, 16].
4

%I #37 Dec 12 2023 08:23:25

%S 1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,

%T 16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,

%U 4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1,4,1,16,1

%N Period 4: repeat [1, 4, 1, 16].

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1).

%F Continued fraction of (8 + sqrt(78))/14.

%F GCD(4k - k^2, 5k^2, 20k - 20k^2, 16 - 32k + 16k^2) for k = 1,2,3,...

%F From _Artur Jasinski_, Oct 29 2008: (Start)

%F a(n) = 1 when n congruent to 1 or 3 mod 4.

%F a(n) = 4 when n congruent to 2 mod 4.

%F a(n) = 16 when n congruent to 0 mod 4. (End)

%F From _Richard Choulet_, Nov 03 2008: (Start)

%F a(n+4) = a(n).

%F a(n) = (9/2)*(-1)^n + (11/2) + 6*cos(Pi*n/2).

%F O.g.f.: f(z) = a(0)+a(1)*z+... = (1+4*z+z^2+16*z^3)/(1-z^4). (End)

%F E.g.f.: sinh(x) + 20*(sinh(x/2))^2 - 12*(sin(x/2))^2. - _G. C. Greubel_, Feb 03 2016

%F a(n) = a(-n). - _Wesley Ivan Hurt_, Jun 15 2016

%F a(n) = A109008(n)^2. - _R. J. Mathar_, Feb 12 2019

%F From _Amiram Eldar_, Jan 01 2023: (Start)

%F Multiplicative with a(2) = 4, a(2^e) = 16 for e >= 2, and a(p^e) = 1 for p >= 3.

%F Dirichlet g.f.: zeta(s)*(12/4^s+3/2^s+1). (End)

%p A146160:=n->[1, 4, 1, 16][(n mod 4)+1]: seq(A146160(n), n=0..100); # _Wesley Ivan Hurt_, Jun 15 2016

%t Table[GCD[4k - k^2, 5k^2, 20k - 20k^2, 16 - 32k + 16k^2], {k, 100}]

%o (Magma) &cat[[1,4,1,16]^^20]; // _Vincenzo Librandi_, Feb 04 2016

%o (PARI) Vec((1+4*x+x^2+16*x^3)/(1-x^4) + O(x^100)) \\ _Altug Alkan_, Feb 04 2016

%Y Cf. A010156, A145996. [_Artur Jasinski_, Oct 29 2008]

%K nonn,easy,mult

%O 1,2

%A _Artur Jasinski_, Oct 27 2008

%E Choulet formula adapted for offset 1 from _Wesley Ivan Hurt_, Jun 15 2016