OFFSET
1,8
COMMENTS
Let V = (e(1),...,e(n)) consist of q 1's, including e(1) = 1 and p-q 0's; let V(h) = (e(1),...,e(h)) and m(h) = (#1's in V(h)) - (#0's in V(h)) for h = 1,...,n. Then M0(p,q,r) = number of V having r = max{m(h)}.
f(n,k) = -1 if 0 <= k <= [(n-1)/2], else f(n,k) = 2*k-n.
LINKS
Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
EXAMPLE
Rows:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 2, 3, 1;
1, 4, 5, 5, 4, 1;
1, 5, 9, 5, 9, 5, 1;
1, 6, 14, 14, 14, 14, 6, 1;
1, 7, 20, 28, 14, 28, 20, 7, 1;
1, 8, 27, 48, 42, 42, 48, 27, 8, 1;
...
(all palindromes)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved