login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050176
T(n,k) = M0(n+1,k,f(n,k)), where M0(p,q,r) is the number of upright paths from (0,0) to (1,0) to (p,p-q) that meet the line y = x-r and do not rise above it and f(n,k) is the least t such that M0(n+1,k,f) is not 0.
3
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 3, 1, 1, 4, 5, 5, 4, 1, 1, 5, 9, 5, 9, 5, 1, 1, 6, 14, 14, 14, 14, 6, 1, 1, 7, 20, 28, 14, 28, 20, 7, 1, 1, 8, 27, 48, 42, 42, 48, 27, 8, 1, 1, 9, 35, 75, 90, 42, 90, 75, 35, 9, 1, 1, 10, 44, 110, 165, 132, 132, 165, 110, 44, 10, 1
OFFSET
1,8
COMMENTS
Let V = (e(1),...,e(n)) consist of q 1's, including e(1) = 1 and p-q 0's; let V(h) = (e(1),...,e(h)) and m(h) = (#1's in V(h)) - (#0's in V(h)) for h = 1,...,n. Then M0(p,q,r) = number of V having r = max{m(h)}.
f(n,k) = -1 if 0 <= k <= [(n-1)/2], else f(n,k) = 2*k-n.
LINKS
Bruce E. Sagan and Joshua P. Swanson, q-Stirling numbers in type B, arXiv:2205.14078 [math.CO], 2022.
EXAMPLE
Rows:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 3, 2, 3, 1;
1, 4, 5, 5, 4, 1;
1, 5, 9, 5, 9, 5, 1;
1, 6, 14, 14, 14, 14, 6, 1;
1, 7, 20, 28, 14, 28, 20, 7, 1;
1, 8, 27, 48, 42, 42, 48, 27, 8, 1;
...
(all palindromes)
CROSSREFS
Cf. A008313.
Sequence in context: A370489 A057555 A075532 * A047130 A125778 A047110
KEYWORD
nonn,tabl
STATUS
approved