|
|
A215695
|
|
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3) with a(0)=1, a(1)=0, a(2)=-2.
|
|
10
|
|
|
1, 0, -2, -9, -33, -113, -376, -1235, -4032, -13126, -42673, -138641, -450293, -1462292, -4748343, -15418256, -50063514, -162556377, -527819057, -1713820537, -5564744720, -18068619435, -58668449392, -190495275070, -618534298433, -2008368291137, -6521130940157, -21173979252396, -68751478912175, -223234649986656, -724838355712626
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
The Berndt-type sequence number 10 for the argument 2Pi/7 defined by the first trigonometric relation from section "Formula". For additional informations and particularly connections with another sequences of trigonometric nature - see comments to A215512 (a(n) is equal to the sequence c(n) in these comments) and Witula-Slota's reference (Section 3).
The following summation formula hold true (see comments to A215512): Sum{k=3,..,n} a(k) = 5*a(n-1) - a(n-2) + 1, n=3,4,...
|
|
LINKS
|
|
|
FORMULA
|
sqrt(7)*a(n) = s(1)*c(1)^(2*n) + s(2)*c(2)^(2*n) + s(4)*c(4)^(2*n), where c(j):=2*cos(2*Pi*j/7) and s(j):=2*sin(2*Pi*j/7).
G.f.: (1-5*x+4*x^2)/(1-5*x+6*x^2-x^3).
|
|
EXAMPLE
|
We have a(8)=3*a(7)+3*a(5)-6*a(2) and a(9)=3*a(8)+3*a(6)-3*a(4)-a(1).
|
|
MATHEMATICA
|
LinearRecurrence[{5, -6, 1}, {1, 0, -2}, 50]
|
|
PROG
|
(PARI) x='x+O('x^30); Vec((1-5*x+4*x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 25 2018
(Magma) I:=[1, 0, -2]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 25 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|