|
|
A202206
|
|
a(n) = 3*a(n-1)+3*a(n-2) with a(0)=1 and a(1)=2.
|
|
2
|
|
|
1, 2, 9, 33, 126, 477, 1809, 6858, 26001, 98577, 373734, 1416933, 5372001, 20366802, 77216409, 292749633, 1109898126, 4207943277, 15953524209, 60484402458, 229313780001, 869394547377, 3296124982134
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1-x)/(1-3*x-3*x^2).
a(n) = 1/2*((3/2+1/2*sqrt(21))^n+(3/2-1/2*sqrt(21))^n)+1/42*sqrt(21)*((3/2+1/2*sqrt(21))^n-(3/2-1 /2*sqrt(21))^n). - Paolo P. Lava, Jan 31 2012.
|
|
MATHEMATICA
|
LinearRecurrence[{3, 3}, {1, 2}, 30] (* Harvey P. Dale, Aug 03 2020 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|