login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202205
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1-x^k)^2.
2
1, 1, -1, 0, -2, 2, -1, 1, 2, -1, -1, 2, -1, -4, 3, -1, 0, -1, 0, 3, 1, -2, 0, 1, 3, -2, -3, 2, -2, 1, -1, 2, -4, -2, 5, -1, 1, 1, -4, 4, -1, 2, 1, -2, 2, -1, -1, -3, 3, 2, -1, -4, 0, 0, -1, 2, -1, 0, 2, -1, 0, -3, 5, -2, -1, 5, 3, -4, -2, 2, -4, 4, 0, 3, -2
OFFSET
0,5
COMMENTS
Compare g.f. to: (1 - eta(x))/x = Sum_{n>=0} x^n*Product_{k=1..n} (1-x^k) = 1 + x - x^4 - x^6 + x^11 + x^14 - x^21 - x^25 + x^34 + x^39 +..., where eta(q) is the Dedekind eta function without the q^(1/24) factor.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - x^2 - 2*x^4 + 2*x^5 - x^6 + x^7 + 2*x^8 - x^9 - x^10 +...
where A(x) = 1 + x*(1-x)^2 + x^2*(1-x)^2*(1-x^2)^2 + x^3*(1-x)^2*(1-x^2)^2*(1-x^3)^2 +...
MATHEMATICA
Join[{1}, Rest[CoefficientList[Series[Sum[x^n Product[(1-x^k)^2, {k, n}], {n, 100}], {x, 0, 100}], x]]] (* Harvey P. Dale, Jun 02 2024 *)
PROG
(PARI) {a(n)=polcoeff(1+sum(m=1, n, x^m*prod(k=1, m, (1-x^k +x*O(x^n))^2)), n)}
CROSSREFS
Cf. A202204.
Sequence in context: A264119 A225518 A269972 * A374034 A336123 A353849
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 14 2011
STATUS
approved