OFFSET
0,5
COMMENTS
Compare g.f. to: (1 - eta(x))/x = Sum_{n>=0} x^n*Product_{k=1..n} (1-x^k) = 1 + x - x^4 - x^6 + x^11 + x^14 - x^21 - x^25 + x^34 + x^39 +..., where eta(q) is the Dedekind eta function without the q^(1/24) factor.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..1000
EXAMPLE
G.f.: A(x) = 1 + x - x^2 - 2*x^4 + 2*x^5 - x^6 + x^7 + 2*x^8 - x^9 - x^10 +...
where A(x) = 1 + x*(1-x)^2 + x^2*(1-x)^2*(1-x^2)^2 + x^3*(1-x)^2*(1-x^2)^2*(1-x^3)^2 +...
MATHEMATICA
Join[{1}, Rest[CoefficientList[Series[Sum[x^n Product[(1-x^k)^2, {k, n}], {n, 100}], {x, 0, 100}], x]]] (* Harvey P. Dale, Jun 02 2024 *)
PROG
(PARI) {a(n)=polcoeff(1+sum(m=1, n, x^m*prod(k=1, m, (1-x^k +x*O(x^n))^2)), n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 14 2011
STATUS
approved