|
|
A264119
|
|
Look and say for Fibonacci word A003842.
|
|
0
|
|
|
1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
COMMENTS
|
Define strings S(0)=2, S(1)=1, S(n)=S(n-1)S(n-2); iterate.
A003842 is S(infinity) and begins 1, 2, 1, 1, 2, 1, 2.
We see one 1, one 2, two 1, one 2, one 1, one 2.
So this sequences begins 1,1, 1,2, 2,1, 1,2, 1,1, 1,2.
|
|
LINKS
|
Table of n, a(n) for n=0..104.
Patrice Séébold, Look and Say Fibonacci, RAIRO-Theor. Inf. Appl. 42 (2008) 729-746.
|
|
PROG
|
(PARI) lns(v) = {vls = []; nb = 0; old = -1; for (k=1, #v, if (v[k] == old, nb++, if (old != -1, vls = concat(vls, nb); vls = concat(vls, old); ); nb = 1; ); old = v[k]; ); vls = concat(vls, nb); vls = concat(vls, old); vls; }
lista(nn=11) = {v = [2]; w = [1]; for (k=1, nn, nw = concat(w, v); v = w; w = nw; ); lns(w); }
|
|
CROSSREFS
|
Cf. A003842.
Sequence in context: A241418 A330348 A117229 * A225518 A269972 A202205
Adjacent sequences: A264116 A264117 A264118 * A264120 A264121 A264122
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Marcus, Apr 03 2016
|
|
STATUS
|
approved
|
|
|
|