|
|
A330348
|
|
a(n) is the number of divisors of n whose last digit equals the last digit of n.
|
|
9
|
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 3, 2, 2, 1, 2, 3, 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 4, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 3, 1, 1, 4, 1, 2, 1, 1, 4, 2, 2, 1, 3, 2, 1, 1, 2, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,11
|
|
COMMENTS
|
Inspired by Project Euler, Problem 474 (see link).
a(n) >= 1.
When n > 10 ends with 0, 1, 2 or 5, then a(n) >= 2.
The first 19 terms are the same as A038769, but a(20) = 2 and A038769(20) = 1.
If n is odd, then a(2*n) = a(n) and a(5*n) = A000005(n). (End)
Integers all of whose divisors end with the same last digit (which is necessarily 1) are in A004615. - Bernard Schott, May 07 2021
|
|
LINKS
|
|
|
EXAMPLE
|
The divisors of 12 that end in 2 are 2 and 12, so a(12) = 2.
|
|
MAPLE
|
f:= proc(n) local t;
t:= n mod 10;
nops(select(k -> k mod 10 = t, numtheory:-divisors(n)))
end proc:
|
|
MATHEMATICA
|
a[n_] := DivisorSum[n, 1 &, Mod[# - n, 10] == 0 &]; Array[a, 100] (* Amiram Eldar, Jun 04 2020 *)
|
|
PROG
|
(PARI) a(n) = my(u=n%10); sumdiv(n, d, (d%10) == u); \\ Michel Marcus, Jun 04 2020
(Python)
from sympy import divisors
def a(n): return sum((n-d)%10 == 0 for d in divisors(n, generator=True))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|