login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202204
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1-x^k)^3.
2
1, 1, -2, 1, -3, 6, -3, 0, 5, -7, -4, 9, -1, -13, 14, 3, -1, -7, -6, 19, -3, -13, -9, 4, 24, -6, -20, 8, -6, 18, 7, 7, -27, -30, 41, 1, 15, -9, -35, 1, -9, 39, 18, -21, 12, -25, -24, -8, 49, 41, 5, -51, -37, 1, -18, 61, 8, 16, 3, -33, -40, -49, 52, 26, 14, 53, 32
OFFSET
0,3
COMMENTS
Compare g.f. to: (1 - eta(x))/x = Sum_{n>=0} x^n*Product_{k=1..n} (1-x^k) = 1 + x - x^4 - x^6 + x^11 + x^14 - x^21 - x^25 + x^34 + x^39 +..., where eta(q) is the Dedekind eta function without the q^(1/24) factor.
LINKS
EXAMPLE
G.f.: A(x) = 1 + x - 2*x^2 + x^3 - 3*x^4 + 6*x^5 - 3*x^6 + 5*x^8 - 7*x^9 +...
where A(x) = 1 + x*(1-x)^3 + x^2*(1-x)^3*(1-x^2)^3 + x^3*(1-x)^3*(1-x^2)^3*(1-x^3)^3 +...
PROG
(PARI) {a(n)=polcoeff(1+sum(m=1, n, x^m*prod(k=1, m, (1-x^k +x*O(x^n))^3)), n)}
CROSSREFS
Cf. A202205.
Sequence in context: A335444 A358646 A006895 * A289815 A125205 A125206
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 14 2011
STATUS
approved