login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Product_{m>=1} (1 + m*q^m)^7.
2

%I #12 Sep 08 2022 08:44:46

%S 1,7,35,154,588,2065,6790,21071,62447,177863,489279,1305402,3389603,

%T 8587999,21280436,51674728,123161500,288539664,665292642,1511359766,

%U 3386065697,7488093282,16357998447,35324428405,75453678433,159512035137,333918915120,692516812176,1423479123640

%N Expansion of Product_{m>=1} (1 + m*q^m)^7.

%H G. C. Greubel, <a href="/A022635/b022635.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: exp(7*Sum_{j>=1} Sum_{k>=1} (-1)^(j+1)*k^j*x^(j*k)/j). - _Ilya Gutkovskiy_, Feb 08 2018

%t With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^7, {k, 1, nmax}], {q, 0, nmax}], q]] (* _G. C. Greubel_, Feb 17 2018 *)

%o (PARI) m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+n*q^n)^7)) \\ _G. C. Greubel_, Feb 17 2018

%o (Magma) Coefficients(&*[(1+m*x^m)^7:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // _G. C. Greubel_, Feb 17 2018

%Y Column k=7 of A297321.

%K nonn

%O 0,2

%A _N. J. A. Sloane_