login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A022638
Expansion of Product_{m>=1} (1 + m*q^m)^10.
2
1, 10, 65, 350, 1630, 6852, 26635, 97030, 334990, 1104730, 3500740, 10710950, 31763985, 91589730, 257459110, 707115814, 1901162925, 5011993330, 12974420315, 33021646490, 82723179433, 204175881220, 496953703885, 1193736868990, 2832017802500, 6639914803684
OFFSET
0,2
LINKS
MAPLE
[seq(coeff(series(mul((1+m*q^m)^(10), m=1..100), q, 101), q, j), j=0..25)]; # Muniru A Asiru, Feb 18 2018
MATHEMATICA
With[{nmax = 50}, CoefficientList[Series[Product[(1 + k*q^k)^10, {k, 1, nmax}], {q, 0, nmax}], q]] (* G. C. Greubel, Feb 17 2018 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+n*q^n)^10)) \\ G. C. Greubel, Feb 17 2018
(Magma) Coefficients(&*[(1+m*x^m)^10:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 17 2018
CROSSREFS
Column k=10 of A297321.
Sequence in context: A169797 A073381 A092441 * A354393 A346976 A354397
KEYWORD
nonn
STATUS
approved