OFFSET
4,2
FORMULA
a(n) = Stirling2(n,4) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,4) * k * a(k).
a(n) ~ -(n-1)! * 2^(n+1) * cos(n*arctan((2*arctan(1/(1 + 1/6^(1/4)))) / log(1 + 2*6^(1/4) + 2*6^(1/2)))) / (4*arctan(1/(1 + 1/6^(1/4)))^2 + log(1 + 2*6^(1/4) + 2*6^(1/2))^2)^(n/2). - Vaclav Kotesovec, Aug 09 2021
a(n) = Sum_{k=1..floor(n/4)} (-1)^(k-1) * (4*k)! * Stirling2(n,4*k)/(k * 24^k). - Seiichi Manyama, Jan 23 2025
MATHEMATICA
nmax = 24; CoefficientList[Series[Log[1 + (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
a[n_] := a[n] = StirlingS2[n, 4] - (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 09 2021
STATUS
approved