|
|
A032089
|
|
"BHK" (reversible, identity, unlabeled) transform of 1,0,1,0...(odds).
|
|
2
|
|
|
1, 0, 1, 1, 2, 3, 5, 9, 14, 25, 39, 68, 107, 182, 289, 483, 772, 1275, 2047, 3355, 5402, 8811, 14213, 23112, 37325, 60580, 97905, 158717, 256622, 415715, 672337, 1088661, 1760998, 2850645, 4611643, 7463884, 12075527, 19541994
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 1..1000
C. G. Bower, Transforms (2)
Index entries for linear recurrences with constant coefficients, signature (1,3,-2,-2,0,-1,1,1).
|
|
FORMULA
|
G.f.: x*(1-x-2*x^2+2*x^3+x^6)/((1-x)*(1+x)*(1-x-x^2)*(1-x^2-x^4)).
a(n) = a(n-1) + 3*a(n-2) - 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) + a(n-8) for n > 8. - Andrew Howroyd, Aug 31 2018
2*a(n) = 2*A000035(n) + A000045(n) - A053602(n). - R. J. Mathar, Mar 02 2022
|
|
PROG
|
(PARI) Vec((1-x-2*x^2+2*x^3+x^6)/((1-x)*(1+x)*(1-x-x^2)*(1-x^2-x^4)) + O(x^40)) \\ Andrew Howroyd, Aug 31 2018
|
|
CROSSREFS
|
Sequence in context: A291896 A018155 A227375 * A352079 A105044 A026008
Adjacent sequences: A032086 A032087 A032088 * A032090 A032091 A032092
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Christian G. Bower
|
|
STATUS
|
approved
|
|
|
|