login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A026005
a(n) = T(4*n,n), where T = Catalan triangle (A008315).
1
1, 4, 27, 208, 1700, 14364, 123970, 1085760, 9612108, 85795600, 770755843, 6960408624, 63127818572, 574609830760, 5246348656500, 48027225765120, 440671237120764, 4051508174260272, 37315784743418332
OFFSET
0,2
LINKS
FORMULA
a(n) = (2n+2)/(3n+2) * C(4n+1, n). - Ralf Stephan, Apr 30 2004
a(n) = C(4n,n)-C(4n,n-2)=A039598(2n,n). - Paul Barry, Apr 21 2009
G.f.: (g-2)*g^2/(3*g-4) where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
Conjecture: 9*n*(3*n+2)*(3*n+1)*a(n) +12*(-55*n^3-59*n^2+65*n-11)*a(n-1) -32*(4*n-5)*(4*n-3)*(2*n-3)*a(n-2)=0. - R. J. Mathar, May 22 2013
a(n) = Sum_{k=0..n}((n+k+1)*binomial(n+k,k)*binomial(3*n-k,n-k))/(2*n+1). - Vladimir Kruchinin, Dec 02 2016
a(n) ~ 2^(8*n+7/2)*3^(-3*n-5/2)/sqrt(Pi*n). - Ilya Gutkovskiy, Dec 02 2016
MATHEMATICA
Table[(2 n+2)/(3 n+2) Binomial[4 n+1, n], {n, 0, 20}] (* Vaclav Kotesovec, Dec 02 2016 *)
PROG
(PARI) a(n) = (2*n+2)/(3*n+2)*binomial(4*n+1, n)
CROSSREFS
Sequence in context: A331796 A193221 A091121 * A059391 A371786 A190738
KEYWORD
nonn
EXTENSIONS
More terms from Ralf Stephan, Apr 30 2004
STATUS
approved