OFFSET
0,3
COMMENTS
Number of lattice paths from (0,0) to the line x=n consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis (i.e. left factors of Schroeder paths); for example, a(3)=5, counting the paths UUU,UUD,UDU,HU and UH. - Emeric Deutsch, Oct 27 2002
Transform of A001405 by |A049310(n,k)|, that is, transform of central binomial coefficients C(n,floor(n/2)) by Chebyshev mapping which takes a sequence with g.f. g(x) to the sequence with g.f. (1/(1-x^2))g(x/(1-x^2)). - Paul Barry, Jul 30 2005
The Kn1p sums, p >= 1, see A180662, of the Schroeder triangle A033877 (offset 0) are all related to A026003, e.g. Kn11(n) = A026003(n), Kn12(n) = A026003(n+2) - 1, Kn13(n) = A026003(n+4) - (2*n+7), Kn14(n) = A026003(n+6) - (2*n^2+18*n+41), Kn15(n) = A026003(n+8) - (4*n^3+66*n^2+368*n+693)/3, etc.. - Johannes W. Meijer, Jul 15 2013
REFERENCES
L. Ericksen, Lattice path combinatorics for multiple product identities, J. Stat. Plan. Infer. 140 (2010) 2213-2226 doi:10.1016/j.jspi.2010.01.017
Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Axel Bacher, Improving the Florentine algorithms: recovering algorithms for Motzkin and Schröder paths, arXiv:1802.06030 [cs.DS], 2018.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Li-Hua Deng, Eva Y. P. Deng and Louis W. Shapiro,The Riordan Group and Symmetric Lattice Paths, arXiv:0906.1844v1 [math.CO], 2009.
FORMULA
G.f.: (sqrt((x^2-2*x-1)/(x^2+2*x-1))-1)/2/x. - Vladeta Jovovic, Apr 27 2003
a(n) = Sum_{k=0..floor(n/2)} C(n-k, k)*C(n-2k, floor((n-2k)/2)). - Paul Barry, Jul 30 2005
From Paul Barry, Mar 01 2010: (Start)
G.f.: 1/(1-x-2x^2/(1-x^2/(1-2x^2/(1-x^2/(1-2x^2/(1-... (continued fraction),
G.f.: 1/(1-x-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-x^2-x^2/(1-... (continued fraction). (End)
D-finite with recurrence (n+1)*a(n) -2*a(n-1) +6*(-n+1)*a(n-2) -2*a(n-3) +(n-3)*a(n-4)=0. - R. J. Mathar, Nov 30 2012
a(n) ~ (1+sqrt(2))^(n+1) / (2^(3/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Feb 13 2014
MAPLE
A026003 :=n -> add(binomial(n-k, k) * binomial(n-2*k, floor((n-2*k)/2)), k=0..floor(n/2)): seq(A026003(n), n=0..30); # Johannes W. Meijer, Jul 15 2013
MATHEMATICA
CoefficientList[Series[(Sqrt[(x^2-2*x-1)/(x^2+2*x-1)]-1)/2/x, {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved